Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
基本信息
- 批准号:10241253
- 负责人:
- 金额:$ 165.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-05 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsAssimilationsBacterial MeningitisBacteriologyBig DataCessation of lifeCharacteristicsCholeraClimateClinical TrialsCommunicable DiseasesComplexCountryDataDecision MakingDeveloped CountriesDeveloping CountriesDiagnosticDiarrheaDimensionsDiseaseDisease OutbreaksEconomicsEngineeringEnvironmental Risk FactorEpidemicEquilibriumExanthemaExerciseFeverFrequenciesGenus staphylococcusGeographyHIVHandHealth PolicyHospitalsHybridsIndividualInfantInfectionInfrastructureInvestmentsLaboratoriesLeadershipLeptospirosisMachine LearningMalariaMeaslesMedicalMedical emergencyMelioidosisMeningitisMethodsMicrobiologyModelingMolecularMorbidity - disease rateNamesNewborn InfantParalysedPatient-Focused OutcomesPatientsPhysiciansPopulationPrediction of Response to TherapyPreventiveProcessPublic HealthRainReactionResistanceResourcesRoleSepsisSpecimenSyndromeSystemTechniquesTechnologyTestingTimeTrainingUgandaWorkacute infectionantigen testantimicrobialauthorityclimate datacostcost outcomesdata fusiondesigneffective therapyfightingfluglobal healthimprovedindividual patientinfant infectioninfectious disease modelinfectious disease treatmentinnovationinsightmicrobialmortalitynovelopen sourcepathogenpersonalized medicinepersonalized predictionspoint of carepredictive modelingprospectiveresistance genespreading factorsurveillance data
项目摘要
Challenge, Innovation and Impact: In recent years, we have demonstrated that it is feasible to predict
epidemic disease outbreaks from retrospective seasonal and geographical case data and to show that we can
take climate factors into account in our predictive models. We are moving closer to real-time prediction at the
population level. But we have never used prediction at point-of-care for treating the individual patient.
Presently, personalized medicine uses delayed results of laboratory testing of individuals. For infectious
disease, most of such testing has targeted the pathogen in the host-pathogen interaction. The role of
laboratory testing is to modify therapy after a variable period of time delay. Personalized medicine today is
reactive. Complicating matters further, many infectious epidemic diseases are strongly dependent on
environmental factors and climate. Lastly, we want to name the pathogens we are fighting, but we really need
to know the resistance characteristics to select therapy for patients effectively. Both speciation and resistance
can now be determined from molecular data, which can be integrated into point-of-care treatment predictions.
We here propose a radically different approach to the treatment of infectious diseases. Our
hypothesis is that the alternative to time-delayed and expensive laboratory analysis of specimens from
individual patients, is to use predictive modeling to forecast point-of-care treatment. Time-delayed
personalized testing can be conducted as surveillance, and that data used for real-time prediction to guide
point-of-care treatment.
We will introduce predictive personalized public health (P3H) policy at the individual patient level,
with the potential to substantially improve patient outcomes compared with our present reactive approaches.
Our key rationale is to expand population infectious disease predictive modeling in order to achieve prediction
for treatment at point-of-care. Our primary insight is that we can reposition the delayed reactive personalized
testing from the urgent medical decision-making process, and into a predictive modeling framework. The gaps
and opportunities in technology that we will address are four-fold. First, we will employ individual case
geospatial mapping at a fine scale to take into account infection spread and environmental factors. Second,
our ability to perform pan-microbial analysis using molecular techniques is now feasible. Third, modeling our
novel fusion of data has no simple low-dimensional solution – but machine learning technologies are now
capable of handling such big data assimilation, model discovery and prediction. Fourth, our proposal is not an
academic exercise. We have a partnership with the economic planners within a developing country to design
and implement our new methods. We will prospectively tune and validate our algorithms in real-time. Our
deliverable will be an open-source framework ready for clinical trials testing and adaptation to the public health
infrastructure in any country.
挑战、创新和影响:近年来,我们已经证明预测是可行的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J SCHIFF其他文献
STEVEN J SCHIFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J SCHIFF', 18)}}的其他基金
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10675428 - 财政年份:2022
- 资助金额:
$ 165.05万 - 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10291003 - 财政年份:2022
- 资助金额:
$ 165.05万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10006784 - 财政年份:2018
- 资助金额:
$ 165.05万 - 项目类别:
Predictive Personalized Public Health (P3H): A Novel Paradigm to Treat Infectious Disease
预测性个性化公共卫生(P3H):治疗传染病的新范式
- 批准号:
10699327 - 财政年份:2018
- 资助金额:
$ 165.05万 - 项目类别:
Control of the Neonatal Septisome and Hydrocephalus in sub-Saharan Africa
撒哈拉以南非洲地区新生儿败血症和脑积水的控制
- 批准号:
8754244 - 财政年份:2015
- 资助金额:
$ 165.05万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7856458 - 财政年份:2009
- 资助金额:
$ 165.05万 - 项目类别:
Innovations at the Intersection of Neural Engineering, Materials Sci & Medicine
神经工程、材料科学交叉点的创新
- 批准号:
7941719 - 财政年份:2009
- 资助金额:
$ 165.05万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 165.05万 - 项目类别:
Research Grant