A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
基本信息
- 批准号:10035169
- 负责人:
- 金额:$ 53.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-23 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAreaBehaviorBiologyChemistryCommunitiesCouplingDNADevelopmentDideoxy Chain Termination DNA SequencingElectrodesEncapsulatedEngravingsExposure toFailureGenomeGlassIndividualLabelLasersLengthLightLiquid ChromatographyMass ChromatographyMeasurementMeasuresMedicineMethodsNanostructuresNucleotidesOilsOligonucleotidesOpticsPatternPhasePhysiologic pulsePolystyrenesPositioning AttributeProcessProductionReactionReagentRefuse DisposalResearch PersonnelRunningSamplingSeriesSiteSolidSpottingsSurfaceSurface TensionSystemTechnologyTestingTimeTransportationWithdrawalWorkloadbasecostdesignelectric fieldgene productgene synthesislaser tweezernanonanophotonicnanoscalenoveloptical trapsplasmonicsqubitsynthetic biologytripolyphosphatewasting
项目摘要
Abstract
Long strand oligonucleotide synthesis continues to be limited by its diminishing returns, with a current maximum
length of ~ 250 bases. As a general rule, one of every 100 molecules will fail to couple, meaning that the average
synthesis run is said to have a coupling efficiency (CE) of 99%. The formula, CEn, where n is the number of
bases added during synthesis, states the longer the strand generated, the more failure strands will be produced.
For example, synthesis of a 40 base strand with a 99% CE will generate 68% full-length product (FLP) as
opposed to synthesis of a 200 base strand, which will yield 13% FLP with the same CE. While there are other
factors that may influence CE (i.e. synthesis parameters and quality of reagents), the main problem is inadequate
accessibility of reagent to each of the molecules on the surface of the solid substrate (i.e. polystyrene beads or
controlled-pore-glass). The most common case is when beads are packaged inside a column sandwiched
between two porous filters; here, stacking of beads causes reduced surface area exposure to synthesis reagents,
whereby DNA molecules become unreacted or only partially reacted. Moreover, spent reagents and unwanted
byproducts become trapped within the support and carry over into consecutive cycles, further contaminating the
synthesis run. To circumvent these limitations, we propose a novel method that allows us to control the actions
of an individual bead through dielectrophoresis on a plasmonic surface. Here, reactions are tuned to completely
encapsulate each bead with minimal volume reagent droplets for high-precision synthesis. Because each bead
is isolated in solution, byproducts cannot become trapped, and each has maximum contact with all synthesis
reagents; it is this intimate 1:1 ratio of bead to reagent that will significantly increase the base addition efficiency
allowing the production of ultra-long strands of DNA > 1000 bases. Until very recently, far-field optics (i.e. optical
tweezers) could not be applied at the nano-scale due to diffraction-limited focused spot size; therefore,
researchers began studying effects of plasmonic nanostructures where light waves are concentrated directly
onto the bead. In our platform, reagent droplets of precise volume and concentration are formed by pulsed laser
cavitation; droplets are then transported along the plasmonic surface to encapsulate individual beads by
overcoming surface tension barrier using dielectrophoretic forces generated by an AC electrical field. Thus, this
approach of encapsulating a bead into a droplet and pulling it out can be employed for a large range of droplet
and bead sizes with the appropriate electrode design. We believe the key to maximizing oligonucleotide purity
and yield during synthesis lies in determining the minimal volume/concentration of each reagent necessary to
coat the surface of an individual bead. With our proposed platform of synthesis on a plasmonic surface, we have
the capability to address each individual bead for an accurate, optimized ratio of bead to reagent droplet of
defined concentration. These developments are necessary to realize the full potential of synthetic biology, by
making large-scale projects accessible to the entire community that will fuel discoveries in genome biology and
medicine.
抽象的
长链寡核苷酸合成继续受到其收益递减的限制,目前最大
长度约为 250 个碱基。作为一般规则,每 100 个分子中就有一个无法耦合,这意味着平均
据说合成运行的耦合效率 (CE) 为 99%。公式 CEn,其中 n 是
在合成过程中添加的碱基表明,生成的链越长,产生的失败链就越多。
例如,合成具有 99% CE 的 40 个碱基链将生成 68% 的全长产物 (FLP),如下所示
与合成 200 个碱基链相反,后者在相同的 CE 下会产生 13% 的 FLP。虽然还有其他
影响CE的因素(即合成参数和试剂质量),主要问题是不充分
试剂对固体基质(即聚苯乙烯珠或
可控孔玻璃)。最常见的情况是珠子包装在夹在中间的柱内
两个多孔过滤器之间;在这里,珠子的堆叠导致接触合成试剂的表面积减少,
DNA分子因此变得不反应或仅部分反应。此外,用过的试剂和不需要的
副产物被困在载体内并进入连续的循环,进一步污染
合成运行。为了规避这些限制,我们提出了一种新方法,可以让我们控制动作
通过等离激元表面上的介电电泳来分离单个珠子。在这里,反应被完全调整到
用最小体积的试剂液滴封装每个珠子,以实现高精度合成。因为每颗珠子
在溶液中被隔离,副产物不会被捕获,并且每种副产物与所有合成都有最大程度的接触
试剂;正是珠子与试剂的这种紧密的 1:1 比例将显着提高碱添加效率
允许生产超过 1000 个碱基的超长 DNA 链。直到最近,远场光学(即光学
由于衍射限制聚焦光斑尺寸,镊子)无法在纳米尺度上应用;所以,
研究人员开始研究光波直接集中的等离子体纳米结构的影响
到珠子上。在我们的平台中,通过脉冲激光形成精确体积和浓度的试剂液滴
气蚀;然后,液滴沿着等离子体表面传输,以封装单个珠子
利用交流电场产生的介电泳力克服表面张力屏障。因此,这个
将珠子封装到液滴中并将其拉出的方法可用于大范围的液滴
和珠子尺寸以及适当的电极设计。我们相信最大化寡核苷酸纯度的关键
合成过程中的产量取决于确定每种试剂所需的最小体积/浓度
涂覆单个珠子的表面。通过我们提出的等离子表面合成平台,我们有
能够处理每个单独的珠子,以获得准确、优化的珠子与试剂滴的比例
规定的浓度。这些发展对于充分发挥合成生物学的潜力是必要的,通过
使整个社区都能参与大型项目,这将推动基因组生物学的发现和
药品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ronald Wayne Davis其他文献
Ronald Wayne Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ronald Wayne Davis', 18)}}的其他基金
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10705040 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10268193 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
A nanophotonic approach to building DNA using enzymatic synthesis
使用酶合成构建 DNA 的纳米光子方法
- 批准号:
10460609 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10416027 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:
Molecular and single-cell immunology of myalgic encephalomyelitis/chronic fatigue syndrome
肌痛性脑脊髓炎/慢性疲劳综合征的分子和单细胞免疫学
- 批准号:
10159206 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:
Ultra high-throughput DNA synthesis via nano-optical conveyer belts
通过纳米光学传送带进行超高通量 DNA 合成
- 批准号:
9379771 - 财政年份:2017
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9340321 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
8702454 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
Genomic and synthetic biology tools for expressing natural product gene clusters
用于表达天然产物基因簇的基因组和合成生物学工具
- 批准号:
9316665 - 财政年份:2014
- 资助金额:
$ 53.03万 - 项目类别:
MISINCORPORATION OF AMINO ACID ANALOGS IN SELECTED HUMAN AND MURINE PROTEINS
选定的人类和鼠类蛋白质中氨基酸类似物的错误掺入
- 批准号:
8365482 - 财政年份:2011
- 资助金额:
$ 53.03万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10665597 - 财政年份:2022
- 资助金额:
$ 53.03万 - 项目类别:
Role of Central Neurotensin Signaling in the Ventral Tegmental Area for Ingestive Behavior and Body Weight
中枢神经降压素信号在腹侧被盖区对摄入行为和体重的作用
- 批准号:
10536558 - 财政年份:2022
- 资助金额:
$ 53.03万 - 项目类别:
Elucidation of the functional role of neural stem cells in the area postrema in the regulation of feeding behavior
阐明后区神经干细胞在调节摄食行为中的功能作用
- 批准号:
21K15177 - 财政年份:2021
- 资助金额:
$ 53.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Evaluation Analysis of Networked Compact City Considering the Wandering Behavior in the Urban Function and Residential guidance Area.
考虑城市功能与居住引导区游走行为的网络化紧凑城市评价分析。
- 批准号:
21K04296 - 财政年份:2021
- 资助金额:
$ 53.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
What is the origin of friction force depending on the sliding velocity? Approach from atomic-scale behavior in real area of contact
取决于滑动速度的摩擦力的来源是什么?
- 批准号:
20K04115 - 财政年份:2020
- 资助金额:
$ 53.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
10242872 - 财政年份:2019
- 资助金额:
$ 53.03万 - 项目类别:
Elucidating roles of ventral tegmental area dopaminergic neurons in motivation of appetitive goal-directed behavior
阐明腹侧被盖区多巴胺能神经元在食欲目标导向行为的激励中的作用
- 批准号:
19K03381 - 财政年份:2019
- 资助金额:
$ 53.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Defining the differential roles of Glutamatergic and GABAergic projections from the Lateral Preoptic Area to the Lateral Habenula in Reward, Aversion, and Drug-Seeking Behavior.
定义从外侧视前区到外侧缰核的谷氨酸能和 GABA 能投射在奖励、厌恶和药物寻求行为中的不同作用。
- 批准号:
9926602 - 财政年份:2019
- 资助金额:
$ 53.03万 - 项目类别:
Investigating the interplay between ventral tegmental area dopamine, medial orbitofrontal cortex, and ventromedial striatum in compulsive-like behavior
研究强迫样行为中腹侧被盖区多巴胺、内侧眶额皮质和腹内侧纹状体之间的相互作用
- 批准号:
9393053 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:
Role of Lateral Hypothalmic Area Perineuronal Nets in the Reinstatement of Cocaine-Seeking Behavior
外侧下丘脑区神经周围网络在恢复可卡因寻求行为中的作用
- 批准号:
9598308 - 财政年份:2018
- 资助金额:
$ 53.03万 - 项目类别:














{{item.name}}会员




