Improving Population Representativeness of the Inference from Non-Probability Sample Analysis

提高非概率样本分析推断的总体代表性

基本信息

  • 批准号:
    10046869
  • 负责人:
  • 金额:
    $ 15.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

SUMMARY The critical role of population-representativeness for estimating disease incidence and prevalence has been widely accepted in epidemiologic studies. Improving population representativeness of nonprobability samples, such as samples of volunteers in epidemiologic studies or electronic health records, however, has received little attention by biostatisticians or epidemiologists. In this project, we propose two innovative “pseudoweight” construction methods: 1) two-step matching, and 2) calibration, under an adapted exchangeability assumption, for unbiased estimation of disease incidence and prevalence in the target population. The proposed methods, combined with machine learning methods for propensity score estimation, will achieve significant bias reduction, especially when selection into nonprobability samples is driven by complex relationships between the covariates. We will quantify the bias reduced by the proposed “pseudoweights”, numerically and empirically, on the estimation of disease incidence and prevalence in the target population. Monte Carlo simulation studies are designed under varying degrees of departure from the adapted exchangeability assumption to evaluate the bias of the proposed estimates. The robustness of the proposed estimators against varying sample sizes, number of clusters in survey, and complexities of the true propensity score modeling will be investigated in scenarios that differ by levels of non-linearity, non-additivity and correlations between covariates in the true propensity model. Using data from National Institutes of Health and the American Association of Retired Persons (NIH-AARP, a nonprobability cohort sample) data and the US National Health Interview Survey (NHIS, a probability survey sample), the proposed methods will be applied to estimate the prevalence of self-reported diseases and all-cause or all-cancer mortality rates for people aged 50-71 in the US. To test our methods, we will purposely select outcome variables that are available in both the NIH-AARP and the NHIS. Thus, the amount of bias in NIH-AARP estimates corrected by the proposed pseudoweights can be quantified in practice, assuming the weighted NHIS estimate is true. The proposed methods, although motivated by the volunteer-based epidemiological studies, have wide applications outside of epidemiology, such as electronic health records or web surveys. The results from this project can be used by epidemiologists and health policy makers to improve the understanding of the health-related characteristics in the general population. Computer software that implements the proposed methods will be made available for public use.
总结 人口代表性在估计疾病发病率和流行率方面的关键作用一直是 在流行病学研究中被广泛接受。提高非概率样本的总体代表性, 例如流行病学研究中的志愿者样本或电子健康记录, 引起生物统计学家或流行病学家的注意。在这个项目中,我们提出了两个创新的“伪八” 构造方法:1)两步匹配,和2)校准,在适应的交换假设下, 对目标人群的发病率和患病率进行无偏估计。所提出的方法, 结合机器学习方法进行倾向评分估计,将实现显著的偏差 减少,特别是当选择到非概率样本是由复杂的关系, 协变量我们将量化的偏见减少了拟议的“伪”,数字和 根据经验,对目标人群的疾病发病率和流行率进行估计。蒙特卡罗 模拟研究的目的是在不同程度的偏离适应交换 假设以评估拟议估计数的偏倚。所提出的估计量对 不同的样本量,调查中的聚类数,以及真实倾向评分模型的复杂性将 在非线性、非相加性和相互关系程度不同的情况下进行调查 真实倾向模型中的协变量。使用来自美国国立卫生研究院和美国 美国退休人员协会(NIH-AARP,非概率队列样本)数据和美国国民健康 访谈调查(NHIS,概率调查样本),所提出的方法将被应用于估计 美国50-71岁人群自我报告疾病的患病率和全因或全癌症死亡率 我们为了测试我们的方法,我们将特意选择在NIH-AARP中可用的结果变量, 和NHIS。因此,建议的伪权重校正的NIH-AARP估计值的偏差量 在实践中可以量化,假设加权NHIS估计是真实的。虽然所提出的方法 受志愿者流行病学研究的启发,在流行病学之外有广泛的应用, 例如电子健康记录或网络调查。该项目的结果可供流行病学家使用 和卫生政策制定者,以提高对与健康有关的特点, 人口实施拟议方法的计算机软件将提供给公众使用。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adjusted logistic propensity weighting methods for population inference using nonprobability volunteer-based epidemiologic cohorts.
  • DOI:
    10.1002/sim.9122
  • 发表时间:
    2021-10-30
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Wang L;Valliant R;Li Y
  • 通讯作者:
    Li Y
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yan Li其他文献

Modeling Fuzzy Data with Fuzzy Data Types in Fuzzy Database and XML Models
使用模糊数据库和 XML 模型中的模糊数据类型对模糊数据进行建模
Formal Mapping of Fuzzy XML Model into Fuzzy Conceptual Data Model
模糊XML模型到模糊概念数据模型的形式化映射
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yan Li
  • 通讯作者:
    Yan Li

Yan Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yan Li', 18)}}的其他基金

Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
  • 批准号:
    10345859
  • 财政年份:
    2022
  • 资助金额:
    $ 15.45万
  • 项目类别:
Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
  • 批准号:
    10589782
  • 财政年份:
    2022
  • 资助金额:
    $ 15.45万
  • 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
  • 批准号:
    10222700
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
  • 批准号:
    10089006
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
  • 批准号:
    10436403
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
  • 批准号:
    10400115
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
  • 批准号:
    10407569
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调控组
  • 批准号:
    9906888
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
  • 批准号:
    10159254
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
  • 批准号:
    9908446
  • 财政年份:
    2018
  • 资助金额:
    $ 15.45万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
  • 批准号:
    24K16438
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
  • 批准号:
    2410889
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
  • 批准号:
    2343858
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
  • 批准号:
    MR/X032922/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
  • 批准号:
    DP240102605
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
  • 批准号:
    2343506
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
  • 批准号:
    24K16033
  • 财政年份:
    2024
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Attention機構に基づく異種集合マッチング方式の分析と新方式の提案
基于注意力机制的异构集合匹配方法分析及新方法的提出
  • 批准号:
    23K11218
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of instruction using focus of attention on performance of chest compressions.
使用注意力集中的教学对胸外按压表现的影响。
  • 批准号:
    23K09887
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
  • 批准号:
    23K01515
  • 财政年份:
    2023
  • 资助金额:
    $ 15.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了