Improving Population Representativeness of the Inference from Non-Probability Sample Analysis
提高非概率样本分析推断的总体代表性
基本信息
- 批准号:10046869
- 负责人:
- 金额:$ 15.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AmericanAttentionCalibrationCharacteristicsComplexComputer softwareDataData AnalysesDiseaseEffectivenessElectronic Health RecordEpidemiologistEpidemiologyEquilibriumGeneral PopulationHealthHealth PolicyIncidenceInternetLeadLogistic RegressionsMachine LearningMalignant NeoplasmsMethodsModelingMonte Carlo MethodNational Health Interview SurveyOutcomePatient Self-ReportPolicy MakerPopulationPrevalenceProbabilityProbability SamplesResearchRoleSample SizeSamplingSourceSurveysTarget PopulationsTestingTreesUnited States National Institutes of HealthWeightagedbasecohortcomplex data designepidemiology studyflexibilityimprovedinnovationmachine learning methodmortalityrandom forestretireesoftware developmentvolunteer
项目摘要
SUMMARY
The critical role of population-representativeness for estimating disease incidence and prevalence has been
widely accepted in epidemiologic studies. Improving population representativeness of nonprobability samples,
such as samples of volunteers in epidemiologic studies or electronic health records, however, has received little
attention by biostatisticians or epidemiologists. In this project, we propose two innovative “pseudoweight”
construction methods: 1) two-step matching, and 2) calibration, under an adapted exchangeability assumption,
for unbiased estimation of disease incidence and prevalence in the target population. The proposed methods,
combined with machine learning methods for propensity score estimation, will achieve significant bias
reduction, especially when selection into nonprobability samples is driven by complex relationships between
the covariates. We will quantify the bias reduced by the proposed “pseudoweights”, numerically and
empirically, on the estimation of disease incidence and prevalence in the target population. Monte Carlo
simulation studies are designed under varying degrees of departure from the adapted exchangeability
assumption to evaluate the bias of the proposed estimates. The robustness of the proposed estimators against
varying sample sizes, number of clusters in survey, and complexities of the true propensity score modeling will
be investigated in scenarios that differ by levels of non-linearity, non-additivity and correlations between
covariates in the true propensity model. Using data from National Institutes of Health and the American
Association of Retired Persons (NIH-AARP, a nonprobability cohort sample) data and the US National Health
Interview Survey (NHIS, a probability survey sample), the proposed methods will be applied to estimate the
prevalence of self-reported diseases and all-cause or all-cancer mortality rates for people aged 50-71 in the
US. To test our methods, we will purposely select outcome variables that are available in both the NIH-AARP
and the NHIS. Thus, the amount of bias in NIH-AARP estimates corrected by the proposed pseudoweights
can be quantified in practice, assuming the weighted NHIS estimate is true. The proposed methods, although
motivated by the volunteer-based epidemiological studies, have wide applications outside of epidemiology,
such as electronic health records or web surveys. The results from this project can be used by epidemiologists
and health policy makers to improve the understanding of the health-related characteristics in the general
population. Computer software that implements the proposed methods will be made available for public use.
摘要
人口代表性在估计疾病发病率和流行率方面的关键作用是
在流行病学研究中被广泛接受。提高非概率样本的总体代表性,
然而,诸如流行病学研究中的志愿者样本或电子健康记录,收到的却很少
生物统计学家或流行病学家的注意。在这个项目中,我们提出了两个创新的“伪八”
构造方法:1)两步匹配,2)校准,在适应的互换性假设下,
对目标人群中的发病率和流行率进行公正的估计。所提出的方法,
结合机器学习方法进行倾向性得分估计,将会达到显著的偏差
约简,特别是当选择非概率样本是由
协变量。我们将量化由拟议的“伪八位数”减少的偏差,从数字和
从经验上讲,关于目标人群中疾病发病率和流行率的估计。蒙特卡洛
模拟研究是在不同程度偏离适应的可交换性的情况下设计的
对拟议估计数的偏差进行评估的假设。所提出的估计量的稳健性
不同的样本大小、调查中的聚类数和真实倾向得分建模的复杂性将
在不同程度的非线性、非可加性和相互关系不同的情况下进行研究
真倾向模型中的协变量。使用来自美国国立卫生研究院和美国
退休人员协会(NIH-AARP,非概率队列样本)数据与美国国民健康
访谈调查(NHIS,一种概率调查样本),建议的方法将被应用于估计
中国50-71岁人群自我报告疾病的患病率和全因或全癌死亡率
我们。为了测试我们的方法,我们将有目的地选择在NIH-AARP中可用的结果变量
和国家健康保险制度。因此,NIH-AARP估计中的偏差量由拟议的伪距校正
可以在实践中量化,假设加权的NHIS估计为真。拟议的方法,尽管
在基于志愿者的流行病学研究的推动下,在流行病学之外有广泛的应用,
例如电子健康记录或网络调查。这一项目的结果可供流行病学家使用
和卫生政策制定者提高对健康相关特征的总体认识
人口。实施拟议方法的计算机软件将提供给公众使用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adjusted logistic propensity weighting methods for population inference using nonprobability volunteer-based epidemiologic cohorts.
- DOI:10.1002/sim.9122
- 发表时间:2021-10-30
- 期刊:
- 影响因子:2
- 作者:Wang L;Valliant R;Li Y
- 通讯作者:Li Y
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Li其他文献
Modeling Fuzzy Data with Fuzzy Data Types in Fuzzy Database and XML Models
使用模糊数据库和 XML 模型中的模糊数据类型对模糊数据进行建模
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Yan Li - 通讯作者:
Yan Li
Formal Mapping of Fuzzy XML Model into Fuzzy Conceptual Data Model
模糊XML模型到模糊概念数据模型的形式化映射
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yan Li - 通讯作者:
Yan Li
Yan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Li', 18)}}的其他基金
Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
- 批准号:
10345859 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
- 批准号:
10589782 - 财政年份:2022
- 资助金额:
$ 15.45万 - 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
- 批准号:
10222700 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
10089006 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
10436403 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
- 批准号:
10400115 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
- 批准号:
10407569 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调控组
- 批准号:
9906888 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
- 批准号:
10159254 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
9908446 - 财政年份:2018
- 资助金额:
$ 15.45万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Attention機構に基づく異種集合マッチング方式の分析と新方式の提案
基于注意力机制的异构集合匹配方法分析及新方法的提出
- 批准号:
23K11218 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of instruction using focus of attention on performance of chest compressions.
使用注意力集中的教学对胸外按压表现的影响。
- 批准号:
23K09887 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing the Influence of SDGs Formulation on Managers' Perceptions and CSR Activities: An Attention-based View
评估可持续发展目标制定对管理者认知和企业社会责任活动的影响:基于注意力的观点
- 批准号:
23K01515 - 财政年份:2023
- 资助金额:
$ 15.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




