Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
基本信息
- 批准号:10589782
- 负责人:
- 金额:$ 36.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdultAmericanAnabolismAnimalsAnti-Inflammatory AgentsAttenuatedBehaviorBindingBiodistributionBrainBrain IschemiaBrain regionCaspaseCell SurvivalCellsCellular StructuresClinicalConfocal MicroscopyDerivation procedureDevelopmentDistalElectron MicroscopyElectrophysiology (science)EmbryoEncapsulatedEngineeringEnvironmentEnzymesExhibitsExtracellular MatrixGoalsHeparan Sulfate ProteoglycanHeparinHeparitin SulfateHistologicHistologyHumanHyaluronic AcidHydrogelsIn SituIn VitroInflammatoryInjectionsInjuryIschemiaIschemic Brain InjuryIschemic StrokeKnowledgeLabelLiquid ChromatographyMagnetic Resonance ImagingMembraneMesenchymal Stem CellsMicroRNAsMiddle Cerebral Artery OcclusionMonitorMorphologyNerve RegenerationNeuronsNeurophysiology - biologic functionOrganoidsOutcomeOxidative StressParacrine CommunicationPathway interactionsPredispositionProsencephalonProteinsProteomicsRattusReactive Oxygen SpeciesRecoveryRecovery of FunctionResearchRodentSignal PathwaySignal TransductionSiteStrokeStructureSystemTSG101 geneTechnologyTestingTherapeuticTherapeutic EffectTransfectionTransplantationUndifferentiatedVesicleWNT Signaling PathwayWestern BlottingWorkanalogbeta cateninbrain tissuecytotoxiceffective therapyexosomeextracellularextracellular vesicleshindbrainimprovedin vivoin vivo imaginginduced pluripotent stem cellinjury recoverymicrovesiclesmonolayernanoparticlenerve stem cellneuralneurodevelopmentneurogenesisneuropathologyneuroprotectionnon-invasive imagingnon-invasive monitornovel therapeuticsoverexpressionpharmacologicreceptor expressionstem cell therapystem cellsstroke modelstroke therapytandem mass spectrometrytherapeutic miRNAtissue regenerationtissue repairtranscriptomeuptakevirtual
项目摘要
Project Summary/Abstract
Currently, about 4 million Americans are living with the effects of stroke, but there is no
effective treatment to improve functional recovery. The stroke-damaged site is especially
cytotoxic to neurons because of the high susceptibility to reactive oxygen species and pro-
inflammatory enzymes. It was recently realized that cellular secretome may be the major
contributor during stem cell therapy. Extracellular vesicles (EVs), the membrane-bound
microvesicles, represent an active component of the cell secretome. And a major contributor to
the activity of EVs is the microRNA cargo. Since 2013, derivation of brain organoids from human
induced pluripotent stem cells (iPSCs) has emerged as a promising approach for mimicking three-
dimensional human brain tissue. However, current knowledge on the therapeutic benefits of EVs
secreted by iPSC-derived brain organoids is limited.
The objectives of this research are to engineer EVs of brain organoids derived from human
iPSCs (iNPCo) and investigate the impacts of iNPCo-secreted EVs on the survival, biosynthesis
of trophic factors and extracellular matrices, and functional neural differentiation in vitro and in
vivo. The central hypothesis is that iNPCo, unlike naïve iPSCs and monolayer neural progenitors,
secrete EVs carrying brain-specific microRNA cargo that can target ischemic brain tissue both by
providing neuroprotection from injury and by promoting recovery after injury; in particular, heparin-
hyaluronic acid hydrogel encapsulation will allow for the sustained delivery of iNPCo-EVs in the
ischemic environment, promoting their therapeutic effects. Based on these hypotheses, we
propose three aims: (1) Aim 1 will test the hypothesis that iNPCo-EVs express exosomal markers
and promote cell survival under oxidative stress in vitro; (2) Aim 2 will test the hypothesis that the
microRNAs in iNPCo-EVs regulate the Wnt pathway and the secretion of trophic factors and
extracellular matrices to stimulate neurogenesis in vitro; and (3) Aim 3 will test the hypothesis that
iNPCo-EVs promote in situ neural differentiation and tissue regeneration in an ischemic stroke
model. To date, no EV study has been performed for brain organoids derived from human iPSCs yet.
The novelty of our study in contrast to previous EV study is the use of three-dimensional brain
region-specific organoid system and the tunable heparin-hyaluronic acid hydrogel encapsulation
for therapeutic EV delivery. This project will advance our understanding of the effects of paracrine
signaling on neural regeneration and establish a transformative approach to modulate
extracellular microenvironment to attenuate ischemic-associated neuropathology toward the goal
of promoting neural regeneration through novel therapeutics.
项目摘要/摘要
目前,大约有400万美国人生活在中风的影响下,但没有
有效的治疗方法以改善功能恢复。尤其是中风损坏的网站
细胞毒性对神经元的细胞毒性,因为对活性氧和促氧的敏感性很高
炎症酶。最近意识到蜂窝秘密组可能是主要的
干细胞疗法期间的贡献者。细胞外蔬菜(EV),膜结合
微泡,代表细胞分泌组的活性成分。以及主要的贡献者
电动汽车的活性是microRNA货物。自2013年以来,人类的脑官派生
诱导的多能干细胞(IPSC)已成为模仿三的有前途的方法
尺寸的人脑组织。但是,当前有关电动汽车治疗益处的知识
由IPSC衍生的脑器官分泌的是有限的。
这项研究的目的是设计源自人类的脑器官的电动汽车
IPSC(INPCO)并研究了INPCO分泌的电动汽车对生物合成的影响
营养因子和细胞外属性,以及在体外和IN的功能中性分化
体内。中心假设是INPCO与IPSC和单层神经祖细胞不同,
携带脑特异性microRNA货物的秘密电动汽车,可以针对缺血性脑组织
通过受伤和促进受伤后的恢复提供神经保护作用;特别是肝素 -
水解酸水凝胶封装将允许持续递送INPCO-EV在
缺血环境,促进其治疗作用。基于这些假设,我们
提案三个目标:(1)目标1将检验Inpco-evs表达外泌体标记的假设
并在体外促进细胞存活; (2)AIM 2将检验以下假设
INPCO-EV中的microRNA调节Wnt途径以及营养因素和分泌
细胞外矩阵在体外刺激神经发生; (3)AIM 3将检验以下假设。
INPCO-EVS在缺血性中风中促进原位神经分化和组织再生
模型。迄今为止,尚未针对从人IPSC衍生的脑器官进行EV研究。
与先前的EV研究相反,我们的研究的新颖性是使用三维大脑
区域特异性的类器官系统和可调的肝素 - 冰盖封装
用于热电动汽车传递。该项目将促进我们对旁分泌的影响的理解
对神经回病的信号传导,并建立一种变革性的方法来调节
细胞外微环境可减弱与目标的缺血性相关神经病理学
通过新疗法促进神经发生的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Li其他文献
Modeling Fuzzy Data with Fuzzy Data Types in Fuzzy Database and XML Models
使用模糊数据库和 XML 模型中的模糊数据类型对模糊数据进行建模
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:1.2
- 作者:
Yan Li - 通讯作者:
Yan Li
Formal Mapping of Fuzzy XML Model into Fuzzy Conceptual Data Model
模糊XML模型到模糊概念数据模型的形式化映射
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Yan Li - 通讯作者:
Yan Li
Yan Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Li', 18)}}的其他基金
Engineering Extracellular Vesicles of Human Brain Organoids for Stroke Therapy
工程化人脑类器官细胞外囊泡用于中风治疗
- 批准号:
10345859 - 财政年份:2022
- 资助金额:
$ 36.44万 - 项目类别:
Improving Population Representativeness of the Inference from Non-Probability Sample Analysis
提高非概率样本分析推断的总体代表性
- 批准号:
10046869 - 财政年份:2020
- 资助金额:
$ 36.44万 - 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
- 批准号:
10222700 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
10089006 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
10436403 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
- 批准号:
10400115 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Optical Coherence Tomography-Aided Differential Diagnosis and Treatment of Irregular Corneas
光学相干断层扫描辅助不规则角膜的鉴别诊断和治疗
- 批准号:
10407569 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调控组
- 批准号:
9906888 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Elucidating human beta cell transcriptional regulome with low-input genomic technologies
利用低输入基因组技术阐明人类 β 细胞转录调节组
- 批准号:
10159254 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
Assessment of Policies through Prediction of Long-term Effects on Cardiovascular Disease Using Simulation (APPLE CDS)
通过模拟预测对心血管疾病的长期影响来评估政策(APPLE CDS)
- 批准号:
9908446 - 财政年份:2018
- 资助金额:
$ 36.44万 - 项目类别:
相似国自然基金
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SMC4/FoxO3a介导的CD38+HLA-DR+CD8+T细胞增殖在成人斯蒂尔病MAS发病中的作用研究
- 批准号:82302025
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
融合多源异构数据应用深度学习预测成人肺部感染病原体研究
- 批准号:82302311
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Hawaii Pacific Islands Mammography Registry
夏威夷太平洋岛屿乳腺X线摄影登记处
- 批准号:
10819068 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Role of meningeal lymphatic vasculature in neuroimmune communication development
脑膜淋巴管系统在神经免疫通讯发育中的作用
- 批准号:
10566682 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Novel Roles of TAZ and YAP in DNA Damage Repair with 3D Genome Organization and the Therapeutic Resistance in Glioblastoma
TAZ 和 YAP 在 3D 基因组组织 DNA 损伤修复中的新作用以及胶质母细胞瘤的治疗耐药性
- 批准号:
10649830 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
Ultrasound-guided Ultra-steerable Histotripsy Array System for Non-invasive treatment of Soft Tissue Sarcoma
超声引导超可控组织解剖阵列系统用于软组织肉瘤的无创治疗
- 批准号:
10649994 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别:
3D force sensing insoles for wearable, AI empowered, high-fidelity gait monitoring
3D 力传感鞋垫,用于可穿戴、人工智能支持的高保真步态监控
- 批准号:
10688715 - 财政年份:2023
- 资助金额:
$ 36.44万 - 项目类别: