Using a Novel Machine Learning Based Data Integration Procedure to Understand the Cherokee Nation Community Population Health
使用基于机器学习的新型数据集成程序来了解切罗基族社区人口健康状况
基本信息
- 批准号:10491197
- 负责人:
- 金额:$ 7.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAgeAgreementAmericanAmerican IndiansAreaBehavioralBehavioral Risk Factor Surveillance SystemCalibrationCherokee IndianClinicCodeCommunitiesCommunity HealthCommunity SurveysComplexCountyCross-Sectional StudiesDataData FilesData SetData SourcesDiabetes MellitusEducational workshopEnvironmental Risk FactorEthnic groupFundingFutureGeographic FactorGeographyGoalsHealthHealth SurveysHealth behaviorHigh PrevalenceIndividualInstitutional Review BoardsMachine LearningMethodologyMethodsModelingNative American Research Center for HealthNot Hispanic or LatinoObesityOklahomaOutcomePerformancePopulationPopulation AnalysisPrevalenceProbability SamplesProceduresPublic HealthPublicationsRaceResearchResearch PersonnelRisk FactorsSample SizeSamplingSelection BiasShapesSmokingSourceSurveysTestingTimeTobaccoTobacco useTrainingUnited States Indian Health ServiceUpdateWeightWorkYouthbasebehavioral studycigarette smokingdata integrationdata qualitydata sharingdesignexperienceimprovedinnovationmeetingsmultidisciplinarymultilevel analysismultiple data sourcesnovelpopulation basedpopulation healthprogramsracial and ethnicsymposiumtherapy developmenttool
项目摘要
PROJECT SUMMARY
Previous studies show discrepancies of health and behavior prevalence between American Indian (AI)
populations and other racial or ethnic groups. Most health surveys have certain limitations for studying AIs due
to the small sample sizes for AI populations. Data collected by Cherokee Nation (CN) Health Survey provides
an excellent opportunity to conduct research for AIs since the sample size is large and the survey contains
extensive information. However, the CN Health Survey focused only on CN citizens who used CN clinics, and
thus the sample may suffer from sampling, coverage, and nonresponse errors without further proper
adjustments. Such difficulties greatly hamper the analysis of AI populations in health and behavior research.
Our general hypothesis is that data integration by combining information from non-probability and probability
samples can reduce sampling, coverage, and nonresponse errors in the original non-probability sample. The
Goal of this project is to develop an accurate and robust data integration methodology for AI population analysis
specifically tailored to health and behavior research and disseminate the methodology to local stakeholders.
In recent years, we have: 1) studied data integration using calibration and parametric modeling approaches; 2)
investigated machine learning and propensity score modeling methods in survey sampling and other fields; and
3) assembled an experienced multi-disciplinary team of experts.
In this project, we propose to capitalize on our expertise and fulfill the following Specific Aims:
Aim 1. Develop and evaluate our proposed novel data integration approaches using machine learning
and propensity score modeling by real data.
We will use real data to validate the proposed methods in terms of accuracy and robustness to the various data
types. The performance will also be assessed by comparing with results from existing data integration methods
such as calibration and parametric modeling approaches. The planned study takes advantage of a unique data
source and expands the impact of Indian Health Service (IHS)-funded research. We expect this novel integration
method will vertically advance the field by facilitating the analysis based on non-probability samples, which can
provide in-depth understanding regarding AI population-based health and behavior studies.
Aim2. Develop county-level small area estimation (SAE) models and examine the association of SAE
estimates with county-level geographic and health related environmental information.
We will compare the estimates based on SAE with direct estimates obtained in Aim 1. Multi-level model will be
built to examine the association between health-related outcomes with county-level geographic and
environmental factors.
Aim 3. Disseminate our research products to local and national stakeholders.
After CN IRB approval, we will disseminate our proposed methods, usage of our data files, and Computational
Codes (e.g. SAS macros and/or R packages) to local and national stakeholders through workshops, trainings,
conferences, and meetings.
项目总结
先前的研究表明,美国印第安人(AI)的健康和行为流行率存在差异
人口和其他种族或民族群体。大多数健康调查在研究认可机构方面都有一定的局限性。
人工智能种群的小样本量。切诺基国家(CN)健康调查收集的数据提供
这是为认可机构进行研究的绝佳机会,因为样本量很大,而调查包括
广泛的信息。然而,CN健康调查只关注使用CN诊所的CN公民,以及
因此,样本可能会受到采样、覆盖和无响应错误的影响,如果没有进一步的适当
调整。这些困难极大地阻碍了在健康和行为研究中对人工智能人群的分析。
我们的一般假设是,通过组合来自非概率和概率的信息来进行数据集成
样本可以减少原始非概率样本中的抽样、覆盖和无响应错误。这个
该项目的目标是为人工智能种群分析开发一种准确和健壮的数据集成方法
专门为健康和行为研究量身定做,并向当地利益攸关方传播该方法。
近年来,我们进行了以下几个方面的研究:1)利用定标和参数建模方法进行数据集成研究;2)
研究了调查抽样等领域中的机器学习和倾向得分建模方法;
3)组建了一支经验丰富的多学科专家团队。
在这个项目中,我们建议利用我们的专业知识,实现以下具体目标:
目标1.使用机器学习开发和评估我们提出的新数据集成方法
用真实数据进行倾向性得分建模。
我们将使用实际数据来验证所提出的方法的准确性和对各种数据的稳健性
类型。还将通过与现有数据集成方法的结果进行比较来评估性能
例如校准和参数建模方法。这项计划中的研究利用了独特的数据
获取并扩大印度卫生服务(IHS)资助的研究的影响。我们期待着这种新颖的整合
方法将通过促进基于非概率样本的分析来垂直推进该领域,这可以
提供关于人工智能基于人群的健康和行为研究的深入理解。
AIM2.开发县级小区域估计(SAE)模型并研究SAE的关联性
使用与县级地理和健康相关的环境信息进行估计。
我们将比较基于SAE的估计与在目标1中获得的直接估计。多水平模型将是
旨在检查与健康相关的结果与县级地理和
环境因素。
目标3.向地方和国家利益攸关方传播我们的研究产品。
在CN IRB批准后,我们将发布我们建议的方法、数据文件的使用和计算
通过研讨会、培训、
会议,和会议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sixia Chen其他文献
Sixia Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sixia Chen', 18)}}的其他基金
Using a Novel Machine Learning Based Data Integration Procedure to Understand the Cherokee Nation Community Population Health
使用基于机器学习的新型数据集成程序来了解切罗基族社区人口健康状况
- 批准号:
10671754 - 财政年份:2021
- 资助金额:
$ 7.95万 - 项目类别:
Improving the representativeness of American Indian Tribal Behavioral Risk Factor Surveillance System (TBRFSS) by machine learning and propensity score based data integration approach A1
通过机器学习和基于倾向评分的数据集成方法提高美洲印第安人部落行为风险因素监测系统(TBRFSS)的代表性A1
- 批准号:
10063407 - 财政年份:2020
- 资助金额:
$ 7.95万 - 项目类别:
Improving the representativeness of American Indian Tribal Behavioral Risk Factor Surveillance System (TBRFSS) by machine learning and propensity score based data integration approach A1
通过机器学习和基于倾向评分的数据集成方法提高美洲印第安人部落行为风险因素监测系统(TBRFSS)的代表性A1
- 批准号:
10271402 - 财政年份:2020
- 资助金额:
$ 7.95万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 7.95万 - 项目类别:
Directed Grant