Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
基本信息
- 批准号:10063994
- 负责人:
- 金额:$ 41.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-10 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAsthmaBindingBinding ProteinsBinding SitesBiological AssayCalciumCalcium BindingCalcium-Activated Potassium ChannelCell membraneCellsChemicalsCircadian RhythmsComputer AnalysisConfounding Factors (Epidemiology)Cryoelectron MicroscopyCrystallizationDataDefectDependenceDiseaseDrug TargetingEdetic AcidElectrophysiology (science)EpilepsyExhibitsFunctional disorderGoalsGrantHearingHomologous GeneHypertensionImpaired cognitionInvestigationIon ChannelIonsKidneyKineticsKnowledgeLeadLengthLigand BindingLigand Binding DomainLigandsLightLipid BilayersLipidsLiposomesLocationMaintenanceMechanical StressMembraneMembrane LipidsMembrane PotentialsMembrane ProteinsModelingMolecularMolecular ConformationMolecular Sequence AlterationMovementMuscle TonusNeuronsOrganismPathway interactionsPhysiologicalPhysiological ProcessesPhysiologyPlayPotassiumPotassium ChannelProcessReportingResolutionRoleSignal TransductionSleep DisordersStimulusStructureSystemTherapeuticThickVariantVascular Smooth MuscleVoltage-Gated Potassium ChannelWaterX-Ray Crystallographycell typecircadian regulationdesignexperimental studyinsightlarge-conductance calcium-activated potassium channelsmolecular dynamicsnanodiskneurotransmitter releaseparticlepreventreconstitutionresponsesensorsimulationvoltage
项目摘要
ABSTRACT
Potassium (K+) channels are major determinants of cell excitability and play crucial roles in physiological
processes. Specifically, large conductance and Ca2+-activated K+ (BK) channels, have the ability to couple
intracellular Ca2+ to membrane potential variations, play major physiological roles ranging from vascular
smooth muscle tone maintenance and regulation of circadian rhythms, to hearing, regulating neuronal firing,
and neurotransmitter release. BK channel dysfunction has been associated with many pathophysiological
conditions, so understanding Ca2+-gating can have major therapeutic consequences. The overall objective of
this grant is to understand molecular mechanisms of Ca2+-gating in K+ channels (opening, closing, and
inactivation) by employing functional, structural, and computational analysis on a model BK channel, MthK, a
close prokaryotic homolog. Unlike BK channels, where voltage-dependent gating is interfering with Ca2+-gating
thus preventing structural determination of specific conformations, MthK is devoid of voltage sensors and thus
a perfect system for investigating Ca2+-dependent gating alone. In addition, electrophysiology experiments
suggested that MthK, just like BK, lacks inactivation at the selectivity filter. This is intriguing, because BK and
MthK share high sequence and structure similarity in the filter with other “inactivating” K+ channels. However, in
specific conditions of K+ and bilayer thickness, MthK does inactivate, raising the possibility that BK also
inactivates under these conditions. This can have major physiological consequences, as knowing conditions
that control activity will lead to new understanding of BK channels’ role in different cell types and cellular
locations. Our first aim is to determine the molecular mechanism of Ca2+-activation. We propose to determine
the structures of apo and Ca2+ bound MthK, from channels reconstituted in lipid nanodiscs, using single-
particle cryo-EM. Lipid composition will be adjusted to yield an open state. MD simulations will be employed to
refine the structures in the lipid membrane, simulate K+ flux, and uncover possible activation pathways. Our
second aim is to determine the lipid bilayer-dependent inactivation mechanism. We will systematically
investigate MthK activation and inactivation kinetics in liposomes of varying lipid thickness made by varying
lipid lengths. Preliminary stopped-flow functional data revealed that thinner bilayers promote MthK inactivation.
Using single-particle cryo-EM, we will determine structures of MthK in nanodiscs of different lipid composition
and associate functional states directly from functional assays. MD simulations will refine these structures, as
well as observe how changing membrane thickness affects conformation and conduction. In our third aim, to
understand the more subtle changes that lead to inactivation in MthK, we propose to use X-ray crystallography
of pore-only MthK together with MD simulations to reveal the sequence of molecular changes involving
selectivity filter, lower gate, ions and water, by imposing conditions that promote inactivation in functional
assays. The accomplishment of these aims will provide a comprehensive picture of Ca2+-gating in K+ channels.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crina M Nimigean其他文献
Crina M Nimigean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crina M Nimigean', 18)}}的其他基金
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
10458032 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
9894550 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
9368089 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
10303754 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
10684676 - 财政年份:2017
- 资助金额:
$ 41.53万 - 项目类别:
2016 Ligand Recognition & Molecular Gating Gordon Research Conference & Gordon Research Seminar
2016年配体认可
- 批准号:
9052270 - 财政年份:2015
- 资助金额:
$ 41.53万 - 项目类别:
2014 Ligand Recognition and Molecular Gating Gordon Research Conference
2014年配体识别与分子门控戈登研究会议
- 批准号:
8647301 - 财政年份:2013
- 资助金额:
$ 41.53万 - 项目类别:
STRUCTURAL STUDIES OF KCSA MUTANTS AND CHIMERAS
KCSA 突变体和嵌合体的结构研究
- 批准号:
8363398 - 财政年份:2011
- 资助金额:
$ 41.53万 - 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
- 批准号:
8537937 - 财政年份:2010
- 资助金额:
$ 41.53万 - 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
- 批准号:
8658176 - 财政年份:2010
- 资助金额:
$ 41.53万 - 项目类别:














{{item.name}}会员




