Structural dynamics in cyclic nucleotide-modulated channels

环核苷酸调节通道的结构动力学

基本信息

  • 批准号:
    9894550
  • 负责人:
  • 金额:
    $ 10.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Cyclic nucleotide-modulated channels play major roles in pacemaking activity in heart and brain as well as in olfactory and visual signal transduction in the nervous system. Defects in the functioning of these channels lead to diseases such as epilepsy, cardiac arrhythmia, and color blindness. The overall objective of this grant is to understand how binding of cyclic nucleotides gates (opens/closes) the channels at the molecular level and how lipids modulate the open-closed equilibrium. We will accomplish this by combining state-of-the-art techniques like single-particle cryo electron microscopy (croEM) with high-speed atomic force microscopy (HS-AFM) and functional assays like single-channel electrophysiology and stopped flow fluorescence assays. Our first aim is to determine using single-particle cryoEM high-resolution structures of these channels, in different conformations (no ligand bound, cAMP-bound, cGMP-bound) and with different lipids (by varying the lipid composition in nanodiscs) and assigning these structures to specific ion channel functional states determined using single-channel electrophysiology. Using lipid bilayer single-channel recordings of the channels in various lipid environments, we will assign functional states (open, closed, etc) to the structures and conformations obtained. This aim will not only yield the first ever atomic-resolution structure of a cyclic nucleotide- modulated channel but also structures of other conformations that will allow us to initiate the building of a structural gating model. Our second aim is to determine the various channel conformations in close-to-native conditions (channels reconstituted in lipid bilayers and in physiological buffer at ambient temperature and pressure) using AFM imaging (including HS-AFM). We will determine the conformational landscape at steady states (i.e. in the presence or absence of ligand) as well as the conformational changes that these channels undergo in real time upon ligand binding and how the equilibrium changes with different lipids. We will directly compare these conformations with those obtained by cryoEM in Aim 1. Using stopped-flow fluorescence macroscopic assays of the channels in liposomes, we will investigate how the activation/inactivation kinetics compares with the real time conformational dynamics measured by HS-AFM. The final goal is to formulate structural gating models for cyclic nucleotide-modulated channels using the conformations determined in aims 1 and 2 with assigned functional states.
摘要 环核苷酸调节通道在心脏和大脑的起搏活动中起重要作用, 神经系统中的嗅觉和视觉信号传导。这些渠道的功能缺陷导致 癫痫、心律不齐和色盲等疾病。这笔赠款的总体目标是 了解环核苷酸的结合如何在分子水平上打开(打开/关闭)通道,以及如何 脂质调节开闭平衡。我们将结合最先进的技术来实现这一目标 比如单粒子低温电子显微镜(croEM)和高速原子力显微镜(HS-AFM), 功能测定,如单通道电生理学和停流荧光测定。我们的首要目标是 为了确定这些通道的单粒子cryoEM高分辨率结构,在不同的 构象(无配体结合、cAMP结合、cGMP结合)和不同脂质(通过改变脂质 纳米盘中的组成)并将这些结构分配给确定的特定离子通道功能状态 使用单通道电生理学。使用脂质双层单通道记录中的通道, 各种脂质环境,我们将分配功能状态(开放,关闭,等)的结构, 获得的构象。这一目标不仅将产生有史以来第一个环核苷酸的原子分辨率结构, 调制的通道,但也有其他构象的结构,这将使我们能够启动建设一个 结构门控模型我们的第二个目标是确定各种通道构象在接近天然的 条件(在脂质双层和生理缓冲液中在环境温度下重构的通道, 使用AFM成像(包括HS-AFM)。我们将确定稳定的构象景观 状态(即在存在或不存在配体的情况下)以及这些通道的构象变化 真实的经历配体结合以及不同脂质的平衡如何变化。我们会直接 将这些构象与目标1中通过cryoEM获得的构象进行比较。使用停流荧光 宏观分析的通道在脂质体中,我们将研究如何激活/失活动力学 与HS-AFM测量的真实的时间构象动力学进行了比较。最终目标是制定 使用aims 1中确定的构象的环核苷酸调节通道的结构门控模型 和2个具有指定的功能状态。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Crina M Nimigean其他文献

Crina M Nimigean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Crina M Nimigean', 18)}}的其他基金

Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
  • 批准号:
    10458032
  • 财政年份:
    2017
  • 资助金额:
    $ 10.05万
  • 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
  • 批准号:
    9368089
  • 财政年份:
    2017
  • 资助金额:
    $ 10.05万
  • 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
  • 批准号:
    10303754
  • 财政年份:
    2017
  • 资助金额:
    $ 10.05万
  • 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
  • 批准号:
    10684676
  • 财政年份:
    2017
  • 资助金额:
    $ 10.05万
  • 项目类别:
2016 Ligand Recognition & Molecular Gating Gordon Research Conference & Gordon Research Seminar
2016年配体认可
  • 批准号:
    9052270
  • 财政年份:
    2015
  • 资助金额:
    $ 10.05万
  • 项目类别:
2014 Ligand Recognition and Molecular Gating Gordon Research Conference
2014年配体识别与分子门控戈登研究会议
  • 批准号:
    8647301
  • 财政年份:
    2013
  • 资助金额:
    $ 10.05万
  • 项目类别:
STRUCTURAL STUDIES OF KCSA MUTANTS AND CHIMERAS
KCSA 突变体和嵌合体的结构研究
  • 批准号:
    8363398
  • 财政年份:
    2011
  • 资助金额:
    $ 10.05万
  • 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
  • 批准号:
    10063994
  • 财政年份:
    2010
  • 资助金额:
    $ 10.05万
  • 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
  • 批准号:
    8537937
  • 财政年份:
    2010
  • 资助金额:
    $ 10.05万
  • 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
  • 批准号:
    8658176
  • 财政年份:
    2010
  • 资助金额:
    $ 10.05万
  • 项目类别:

相似海外基金

Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Research Grant
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Research Grant
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Discovery Projects
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 10.05万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了