Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
基本信息
- 批准号:10684676
- 负责人:
- 金额:$ 39.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AgonistArrhythmiaAtomic Force MicroscopyBehaviorBindingBiological AssayBrainCell physiologyCellsColor blindnessCryoelectron MicroscopyCyclic AMPCyclic GMPCyclic NucleotidesDefectDiseaseElectrophysiology (science)EnzymesEpilepsyEquilibriumGoalsGrantHCN1 geneHeartHeterogeneityImageInvestigationIsomerismKineticsLeadLengthLigandsLipid BilayersLipidsLiposomesMass Spectrum AnalysisMeasuresModalityModelingMolecularMolecular ConformationMonitorMutateMutationNervous SystemOutputPeptidylprolyl IsomerasePhasePhysiologicalPhysiological ProcessesPlayPopulationProbabilityProcessProlinePropertyProteinsRegulationReportingResearchResolutionRoleS phaseSamplingSignal TransductionSpectrum AnalysisStructureSurfaceTechniquesTestingTimeVisualVisual Signal Transduction Pathwayantagonistcis trans isomerizationcombinatorialcyclic-nucleotide gated ion channelsdesignexperimental studyimprovedinsightmutantnovelnovel therapeuticsparticlepatch clampreconstitutionresponsesensorsingle moleculestopped-flow fluorescencevoltage
项目摘要
ABSTRACT
Cyclic nucleotide-modulated channels play major roles in pacemaking activity in heart and brain as well as in
olfactory and visual signal transduction in the nervous system. Defects in the functioning of these channels lead
to diseases such as epilepsy, cardiac arrhythmia, and color blindness. The overall objective of this grant is to
understand how binding of cyclic nucleotides gates (opens/closes) the channels and how other factors such as
lipids and proline isomerization modulate this gating. We will accomplish this by combining state-of-the-art
techniques: single-particle cryo electron microscopy (cryo-EM) with atomic force microscopy force spectroscopy
(AFM-FS), native mass spectrometry (MS), and functional assays like single-channel electrophysiology and
stopped flow fluorescence assays of channels incorporated in liposomes. We will employ SthK, a model
prokaryotic cyclic nucleotide-modulated channel, and also eukaryotic HCN1 and HCN2 for select sub-aims. Our
first aim is to determine the molecular mechanisms for partial agonism and ligand selectivity in SthK. We will
determine the structures of specific voltage-sensor SthK mutants that display increased open probability and
correlate class averages with the single-channel electrophysiology. To determine the molecular mechanism for
ligand selectivity we will use AFM-FS to determine at the single-molecule level the binding kinetics of cAMP and
cGMP to either the SthK cyclic nucleotide binding domain alone or in the context of the full-length channel. This
will yield the energetics of binding of both cyclic nucleotides and will isolate the contribution of the pore to the
binding. This aim will shed light on why cAMP binding does not fully open the SthK channel and why cGMP is
an antagonist, although its binding modality to the binding pocket is similar to that of cAMP. Our second aim is
to understand how lipids modulate channel activity. We will systematically test the effect of lipids on SthK activity
using stopped-flow fluorescence assays and single-channel electrophysiology where channels are in liposomes
of controlled composition. We will determine the lipids tightly bound to the channels (both SthK and HCN1) using
native MS and determine the mechanism of how they increase activity by perturbing the residues that appear to
coordinate these lipid-protein interactions with functional assays. The third aim is to characterize functionally
and structurally the regulation of SthK as well as potentially HCN channels by a newly discovered modality: prolyl
isomerization of a conserved proline in the cyclic nucleotide binding domain, which appears to be responsible
for SthK’s biphasic activation with cAMP. This can be highly impactful, as proline isomerization may turn out to
be yet another means to regulate pacemaking activity in the heart and brain. All aims are geared towards
unravelling the molecular mechanisms of cyclic nucleotide-modulated channels’ synergistic regulation by
ligands, lipids and enzymes, which integrate to yield the channel activation levels required by the physiology of
the cell.
抽象的
环核苷酸调节通道在心脏和大脑的起搏活动以及
神经系统中的嗅觉和视觉信号转导。这些渠道的功能缺陷会导致
癫痫、心律失常和色盲等疾病。这笔赠款的总体目标是
了解环核苷酸的结合如何门控(打开/关闭)通道以及其他因素如何
脂质和脯氨酸异构化调节这种门控。我们将通过结合最先进的技术来实现这一目标
技术:单粒子冷冻电子显微镜 (cryo-EM) 与原子力显微镜力谱
(AFM-FS)、天然质谱 (MS) 以及单通道电生理学和功能测定等
对脂质体中掺入的通道进行停流荧光测定。我们将采用 SthK,一个模型
原核环核苷酸调节通道,以及用于选择子目标的真核 HCN1 和 HCN2。我们的
第一个目标是确定 SthK 中部分激动和配体选择性的分子机制。我们将
确定特定电压传感器 SthK 突变体的结构,这些突变体表现出增加的开放概率和
将班级平均值与单通道电生理学相关联。确定分子机制
配体选择性 我们将使用 AFM-FS 在单分子水平上确定 cAMP 和
cGMP 单独或在全长通道的背景下与 SthK 环核苷酸结合域结合。这
将产生两种环核苷酸结合的能量,并将分离孔对
绑定。这一目标将阐明为什么 cAMP 结合不能完全打开 SthK 通道以及为什么 cGMP 不能完全打开 SthK 通道。
拮抗剂,尽管其与结合袋的结合方式与 cAMP 相似。我们的第二个目标是
了解脂质如何调节通道活性。我们将系统地测试脂质对SthK活性的影响
使用停流荧光测定和单通道电生理学,其中通道位于脂质体中
的受控成分。我们将使用以下方法确定与通道(SthK 和 HCN1)紧密结合的脂质
天然 MS 并确定它们如何通过扰动似乎具有活性的残基来增加活性的机制
协调这些脂质-蛋白质相互作用与功能测定。第三个目标是从功能上表征
以及通过新发现的方式对 SthK 以及潜在的 HCN 通道进行结构性调节:脯氨酰
环核苷酸结合域中保守脯氨酸的异构化,这似乎是造成这种情况的原因
用于 SthK 与 cAMP 的双相激活。这可能会产生很大的影响,因为脯氨酸异构化可能会导致
是调节心脏和大脑起搏活动的另一种方法。所有的目标都是为了
揭示环核苷酸调节通道协同调节的分子机制
配体、脂质和酶,它们整合以产生生理学所需的通道激活水平
细胞。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Discrimination between cyclic nucleotides in a cyclic nucleotide-gated ion channel.
- DOI:10.1038/s41594-023-00955-3
- 发表时间:2023-04
- 期刊:
- 影响因子:16.8
- 作者:Pan, Yangang;Pohjolainen, Emmi;Schmidpeter, Philipp A. M.;Vaiana, Andrea C.;Nimigean, Crina M.;Grubmueller, Helmut;Scheuring, Simon
- 通讯作者:Scheuring, Simon
Correlation of membrane protein conformational and functional dynamics.
- DOI:10.1038/s41467-021-24660-1
- 发表时间:2021-07-16
- 期刊:
- 影响因子:16.6
- 作者:Sanganna Gari RR;Montalvo-Acosta JJ;Heath GR;Jiang Y;Gao X;Nimigean CM;Chipot C;Scheuring S
- 通讯作者:Scheuring S
An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel.
虹膜膜片机制,用于栅极循环核苷酸门控离子通道。
- DOI:10.1038/s41467-018-06414-8
- 发表时间:2018-09-28
- 期刊:
- 影响因子:16.6
- 作者:Marchesi A;Gao X;Adaixo R;Rheinberger J;Stahlberg H;Nimigean C;Scheuring S
- 通讯作者:Scheuring S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crina M Nimigean其他文献
Crina M Nimigean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crina M Nimigean', 18)}}的其他基金
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
10458032 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
9894550 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
9368089 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
Structural dynamics in cyclic nucleotide-modulated channels
环核苷酸调节通道的结构动力学
- 批准号:
10303754 - 财政年份:2017
- 资助金额:
$ 39.97万 - 项目类别:
2016 Ligand Recognition & Molecular Gating Gordon Research Conference & Gordon Research Seminar
2016年配体认可
- 批准号:
9052270 - 财政年份:2015
- 资助金额:
$ 39.97万 - 项目类别:
2014 Ligand Recognition and Molecular Gating Gordon Research Conference
2014年配体识别与分子门控戈登研究会议
- 批准号:
8647301 - 财政年份:2013
- 资助金额:
$ 39.97万 - 项目类别:
STRUCTURAL STUDIES OF KCSA MUTANTS AND CHIMERAS
KCSA 突变体和嵌合体的结构研究
- 批准号:
8363398 - 财政年份:2011
- 资助金额:
$ 39.97万 - 项目类别:
Molecular Mechanisms of Potassium Channel Permeation and Gating
钾通道渗透和门控的分子机制
- 批准号:
10063994 - 财政年份:2010
- 资助金额:
$ 39.97万 - 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
- 批准号:
8537937 - 财政年份:2010
- 资助金额:
$ 39.97万 - 项目类别:
Molecular mechanisms of potassium channel permeation and gating
钾通道渗透和门控的分子机制
- 批准号:
8658176 - 财政年份:2010
- 资助金额:
$ 39.97万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
WBP Fellowship
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 39.97万 - 项目类别:














{{item.name}}会员




