Predicting Transcriptional and Epigenetic Networks in Cancer from Sequencing Data
从测序数据预测癌症中的转录和表观遗传网络
基本信息
- 批准号:10054960
- 负责人:
- 金额:$ 32.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-12-16 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBindingBinding SitesCancer PatientCellsChromatinComplexComputing MethodologiesDNADNA Sequence AlterationDataDevelopmentDrug resistanceEpigenetic ProcessFamilyFamily memberFrequenciesFundingGene Expression RegulationGeneticGenetic TranscriptionGenomeGenomicsGlioblastomaGoalsHigh PrevalenceIndividualKnock-outKnowledgeLinkMachine LearningMalignant NeoplasmsMediatingMethodsMolecularMolecular TargetMutationNatureOncogenicPatientsPatternPhasePoint MutationProtein IsoformsRNA-Directed DNA PolymeraseRecurrenceResearchRoleSomatic MutationSpecificityTERT geneTechniquesTelomeraseTelomere MaintenanceTestingTherapeuticTimeToxic effectTranscriptional RegulationUntranslated RNAValidationVariantWorkanticancer researchbasebioinformatics resourcec-myc Genescancer cellcancer genomicscancer typecomputer frameworkcomputing resourcesdeep learningdimergenetic variantgenome-wideindividual patientinsightknowledge of resultsmelanomamembermutantnovelnovel therapeutic interventionpromoterrecruitresistance mechanismtelomeretherapeutic targettooltranscription factortreatment response
项目摘要
Limitless replicative potential is a key hallmark of cancer and critically depends on telomere maintenance. Many
cancers thus aberrantly reactivate the telomerase reverse transcriptase (TERT), a catalytic subunit of the
telomerase complex that elongates telomere. It has been recently discovered that this common path to
immortality in multiple cancers is through two activating point mutations in the TERT promoter (TERTp), found
in more than 50 different cancer types, often at strikingly high frequencies, e.g. roughly 83% in glioblastomas
(GBM) and 71% in melanomas. In the previous funding period, the PI has identified the molecular function of
these highly recurrent mutations, demonstrating that the transcription factor (TF) GABP binds the mutant TERTp
with exquisite specificity, but not the wild-type TERTp. The high prevalence of TERTp mutations across multiple
cancer types and the selectivity of GABP recruitment to mutant TERTp thus provide an unprecedented
opportunity for treating a large number of cancer patients with minimal toxicity to healthy cells. Despite the clear
significance of this opportunity, however, several important questions surrounding the molecular functions and
modulators of TERTp mutations remain poorly understood, hindering the development of effective and safe
therapeutic strategies.
Our long-term goal is to establish a rigorous computational framework for understanding the aberrant
transcriptional and epigenetic networks in cancers and to apply the resulting knowledge to devise novel
therapeutic strategies that account for the genetic background of individual patients and that can a priori predict
and avoid potential resistance mechanisms. The objective of our current renewal proposal is to develop powerful
computational methods for transforming our knowledge about the non-coding TERTp mutations into an effective
and safe molecular target. At the same time, the resulting methods will help resolve several outstanding
challenges in the field of transcriptional gene regulation and have broad applications in cancer genomics. We
will accomplish our objective my pursuing the following Aims: (1) Develop and test a computational framework
for inferring sequence features that determine the distinct and shared binding patterns of paralogous TFs; (2)
Develop and validate integrative tools for discovering the molecular basis of genetic interactions between
germline variations and oncogenic mutations; (3) Develop and apply computational methods for studying the
role of DNA helical phase between adjacent binding motifs in recruiting ETS factors to chromatin; (4) Perform a
systematic genomic characterization of the effects of knocking out GABPB1L in TERTp-mutant cancer cells and
healthy cells.
The results of this proposal will have a broad impact on cancer research by providing powerful tools for studying
paralogous oncogenic TFs and revealing novel insights into a highly promising therapeutic strategy.
无限的复制潜力是癌症的一个关键标志,关键取决于端粒的维持。许多
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun S Song其他文献
Jun S Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun S Song', 18)}}的其他基金
Predicting Transcriptional and Epigenetic Networks in Cancer from Sequencing Data
从测序数据预测癌症中的转录和表观遗传网络
- 批准号:
8585043 - 财政年份:2011
- 资助金额:
$ 32.65万 - 项目类别:
Predicting Transcriptional and Epigenetic Networks in Cancer from Sequencing Data
从测序数据预测癌症中的转录和表观遗传网络
- 批准号:
8838736 - 财政年份:2011
- 资助金额:
$ 32.65万 - 项目类别:
Predicting Transcriptional and Epigenetic Networks in Cancer from Sequencing Data
从测序数据预测癌症中的转录和表观遗传网络
- 批准号:
8401514 - 财政年份:2011
- 资助金额:
$ 32.65万 - 项目类别:
Predicting Transcriptional and Epigenetic Networks in Cancer from Sequencing Data
从测序数据预测癌症中的转录和表观遗传网络
- 批准号:
10310467 - 财政年份:2011
- 资助金额:
$ 32.65万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:32170319
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
番茄EIN3-binding F-box蛋白2超表达诱导单性结实和果实成熟异常的机制研究
- 批准号:31372080
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
P53 binding protein 1 调控乳腺癌进展转移及化疗敏感性的机制研究
- 批准号:81172529
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
DBP(Vitamin D Binding Protein)在多发性硬化中的作用和相关机制的蛋白质组学研究
- 批准号:81070952
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
研究EB1(End-Binding protein 1)的癌基因特性及作用机制
- 批准号:30672361
- 批准年份:2006
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 32.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 32.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 32.65万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 32.65万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 32.65万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 32.65万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 32.65万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 32.65万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 32.65万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 32.65万 - 项目类别:
Standard Grant