Molecular Analysis of Chromosome Segregation

染色体分离的分子分析

基本信息

  • 批准号:
    10093081
  • 负责人:
  • 金额:
    $ 73.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Project Summary Life depends on the accurate transmission of genetic material at each cell division. Errors in this process lead to aneuploidy, which is implicated in oncogenesis, birth defects and cell death. Duplicated chromosomes are captured and segregated by a microtubule-based molecular machine, the mitotic spindle. The spindle is bipolar and each spindle pole carries an exact complement of chromosomes to each daughter cell. During mitosis, microtubules nucleate from the poles and capture and organize the chromosomes. Kinetochores, large multiprotein organelles located at the centromeric DNA, bind the microtubules and anchor the chromosomes to the poles. Our work focuses on each end of the microtubule, the spindle poles and the kinetochores. Spindle morphogenesis requires spatially controlled microtubule nucleation. Using a combination of reconstitution and in vivo analysis, we will test hypotheses that address how microtubule nucleation is activated and spatially regulated. Kinetochores attach chromosomes to microtubules with a striking combination of strength and plasticity. The attachments are mobile and robust under tension, but can also rapidly destabilize in response to regulatory signals. As such, the kinetochore is at the center of an error correction mechanism that repairs incorrect attachments sensed by a lack of ‘proper’ tension. The identification of the proteins that are under tension, the measurement of the strength of the linkages and the requirements for the full strength of attachments are together the second focus of this project. We have found that individually no kinetochore protein binds the microtubule with strength or longevity. To reconstitute the full strength of microtubule attachment exhibited by native kinetochores requires synergy between proteins in contact with the microtubule with proteins within the interior of the kinetochore. We will use a reconstitution-based approach and in vivo analysis to test the contribution of affinity, avidity and geometry to this synergy. In this way we will understand how the whole achieves greater properties than the sum of the parts. In addition, by exploiting our reconstituted kinetochore, we will test hypotheses for how the tension signal that triggers error correction is transmitted from the kinetochore and received by the repair mechanisms.
项目摘要 生命取决于每次细胞分裂时遗传物质的准确传递。此过程中的错误 导致非整倍体,这与肿瘤发生、出生缺陷和细胞死亡有关。复制 染色体被一个基于微管的分子机器--有丝分裂细胞--捕获并分离。 纺锤体。纺锤体是双极的,每个纺锤体极携带完全互补的染色体, 每个子细胞在有丝分裂过程中,微管从两极成核,并捕获和组织细胞。 染色体着丝粒是位于着丝粒DNA上的大型多蛋白质细胞器, 微管和锚染色体的两极。我们的工作重点是每一个结束 微管、纺锤极和动粒。 纺锤体形态发生需要空间控制的微管成核。结合使用 重建和体内分析,我们将测试假设,解决如何微管成核是 激活并在空间上调节。 动粒将染色体附着在微管上,具有惊人的强度和可塑性。 附件是移动的并且在张力下是坚固的,但是也可以响应于压力而快速地不稳定。 监管信号。因此,动粒处于错误纠正机制的中心, 由于缺乏“适当”的张力而感觉到的不正确的附件。对蛋白质的鉴定 在张力下,连接强度的测量和对全部强度的要求 附件是本项目的第二个重点。 我们已经发现,单个的动粒蛋白没有强度或寿命结合微管。 要重建天然动粒所表现出的微管附着的全部强度, 与微管接触的蛋白质与微管内部的蛋白质之间的协同作用 动粒我们将使用一种基于重组的方法和体内分析来测试 亲和力、贪婪度和几何形状与这种协同作用的关系。这样我们就能理解整体是如何实现的 比各部分的总和更大的属性。此外,通过利用我们重组的动粒, 将测试关于触发纠错的张力信号如何从 动粒并被修复机制接收。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trisha N. Davis其他文献

A Bayesian Integrative Structure Model of the Yeast Centrosome
  • DOI:
    10.1016/j.bpj.2017.11.240
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Shruthi Viswanath;Massimiliano Bonomi;Seung Joong Kim;Vadim A. Klenchin;Keenan Taylor;King C. Yabut;Neil T. Umbreit;Janet Meehl;Michele H. Jones;Javier Velazquez-Muriel;Mark Winey;Ivan Rayment;Trisha N. Davis;Andrej Sali;Eric D. Muller
  • 通讯作者:
    Eric D. Muller
Design of a hyperstable 60-subunit protein icosahedron
一种超稳定的 60 亚基蛋白质二十面体的设计
  • DOI:
    10.1038/nature18010
  • 发表时间:
    2016-06-15
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yang Hsia;Jacob B. Bale;Shane Gonen;Dan Shi;William Sheffler;Kimberly K. Fong;Una Nattermann;Chunfu Xu;Po-Ssu Huang;Rashmi Ravichandran;Sue Yi;Trisha N. Davis;Tamir Gonen;Neil P. King;David Baker
  • 通讯作者:
    David Baker
Reconstitution Of Microtubule-driven Movement and Force Production by the Ndc80 Kinetochore Complex
  • DOI:
    10.1016/j.bpj.2008.12.3744
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew D. Franck;Andrew F. Powers;Daniel R. Gestaut;Jeremy Cooper;Beth Gracyzk;Ronnie R. Wei;Linda Wordeman;Trisha N. Davis;Charles L. Asbury
  • 通讯作者:
    Charles L. Asbury
The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components.
酿酒酵母纺锤体杆体:核心部件的结构和组装。
Genetic analysis of yeast spindle pole bodies.
酵母纺锤体极体的遗传分析。
  • DOI:
    10.1016/s0091-679x(01)67007-9
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trisha N. Davis
  • 通讯作者:
    Trisha N. Davis

Trisha N. Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trisha N. Davis', 18)}}的其他基金

Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
  • 批准号:
    10551264
  • 财政年份:
    2019
  • 资助金额:
    $ 73.08万
  • 项目类别:
Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
  • 批准号:
    10335237
  • 财政年份:
    2019
  • 资助金额:
    $ 73.08万
  • 项目类别:
Microtubule Nucleation and its Regulation
微管成核及其调控
  • 批准号:
    8668221
  • 财政年份:
    2014
  • 资助金额:
    $ 73.08万
  • 项目类别:
Comprhensive Biology: Exploiting the Yeast Genome
综合生物学:利用酵母基因组
  • 批准号:
    8416531
  • 财政年份:
    2012
  • 资助金额:
    $ 73.08万
  • 项目类别:
YRC PUBLIC IMAGE REPOSITORY (YRC PIR)
YRC 公共图像存储库 (YRC PIR)
  • 批准号:
    8171214
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:
YEAST SPINDLE ASSEMBLY
酵母主轴组件
  • 批准号:
    8171460
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:
ADMINISTRATION OF THE YEAST RESOURCE CENTER
酵母资源中心的管理
  • 批准号:
    8171208
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:
ISOTOPE SIGNATURE BASED IDENTIFICATION OF CROSSLINKED PEPTIDES BY MS
通过 MS 基于同位素特征的交联肽鉴定
  • 批准号:
    8171348
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:
ANALYSIS OF TUBULIN
微管蛋白的分析
  • 批准号:
    8171249
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:
TUB4 COMPLEX IN YEAST
酵母中的 TUB4 复合物
  • 批准号:
    8171267
  • 财政年份:
    2010
  • 资助金额:
    $ 73.08万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 73.08万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了