Microtubule Nucleation and its Regulation

微管成核及其调控

基本信息

  • 批准号:
    8668221
  • 负责人:
  • 金额:
    $ 32.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

The fundamental function of centrosomes is to nucleate and stabilize microtubules that serve to segregate chromosomes (the spindle microtubules) or position the spindle (the aster microtubules). Microtubule nucleation is a critical event in the cell cycle and cells regulate the nucleation capacity of the centrosome to increase at the start of mitosis when more microtubules are required. This project focuses on the nucleation process with a combination of both in vitro and in vivo experimental approaches. Gamma-tubulin is a conserved essential element of microtubule nucleation. With two other conserved proteins it forms the gamma-tubulin small complex. Multimers of the small complex can form a ring that is thought to template the assembly of alpha-beta tubulin dimers into a ring of protofilaments and thereby form a nascent microtubule (2). However, the control of small complex ring formation, the activation of the nucleation capacity of the ring complex, the mechanism by which alpha-beta tubulin dimers are captured and stabilized, and the feedback mechanisms that control the nucleation capacity are still not well understood. The first two aims address the activation of the y-tubulin ring complex. The 6.5 A structure of filaments of the y- tubulin complex showed the y-tubulins are held in a ring of 13. However they are positioned too far apart to template the 13 protofilaments found in microtubules (1). This result suggested the current hypothesis: the y- tubulin small complex could be activated to form a template for nucleation by a structural transformation that positions the y-tubulins to match the orientation and geometry of the alpha-beta tubulin dimers that form the microtubule. This transformation requires both closure of the gamma-tubulin small complex and allosteric activation (1) (unpublished data). We will use genetic, biochemical and cell biological approaches to perform functional analyses of the y-tubulin complex in vitro and in vivo. Our work is directly complementary to structural and biophysical approaches taken by the Agard lab. Together, we will provide a detailed understanding of the physical and biological basis of microtubule nucleation. In the third aim we step back from the mechanism of nucleation and examine the control of the overall nucleation capacity of the centrosome. The nucleation capacity of the centrosome expands several fold in preparation for mitosis (3). This expansion has been termed centrosome maturation. For the centrosome of higher eukaryotes, a model is beginning to emerge that the assembly and maturation of the pericentriolar material involves the enrichment of core proteins driven by protein phosphorylation by the mitotic kinases PIkl and Aurora-A (4). However the complexity of the pericentriolar material both in ultrastructure and composition has hampered progress. The full complement of proteins that are involved is not known, the upstream signals that trigger phosphorylation are not known, and the consequences of phosphorylation on maturation remains to be discovered. In yeast nucleation capacity is regulated by cell cycle events and cell ploidy. Notably expansion of the spindle pole body occurs upon activation of the mitotic checkpoint. This provides a very simple method to experimentally control expansion and thereby study its requirements (5-7). In yeast, all the structural proteins in the SPB are known and many of their sites of phosphorylation have been determined (8). In addition we have identified three proteins involved in the expansion process through a genetic screen (9). In the third aim, the kinetics of expansion and turnover, the role of these three proteins in the expansion process and the role of phospho-regulation of the gamma-tubulin complex will be examined as a model for centrosome maturation. This work will complement the aim in the Winey lab project that will determine the role of the phosphorylation of core proteins in centrosome assembly.
中心体的基本功能是使微管成核并稳定微管,从而分离 染色体(纺锤体微管)或定位纺锤体(紫苑微管)。微管 成核是细胞周期中的关键事件,细胞调节中心体的成核能力 当需要更多微管时,有丝分裂开始时增加。该项目的重点是成核 结合体外和体内实验方法的过程。 γ-微管蛋白是微管成核的保守必需元素。与另外两种保守蛋白 它形成γ-微管蛋白小复合体。小复合物的多聚体可以形成被认为是模板的环 α-β微管蛋白二聚体组装成原丝环,从而形成新生微管 (2)。然而,控制小复杂环的形成,激活环的成核能力 复杂的α-β微管蛋白二聚体被捕获和稳定的机制以及反馈 控制成核能力的机制仍不清楚。 前两个目标是解决 y-微管蛋白环复合物的激活问题。 6.5 y-细丝的A结构 微管蛋白复合物显示 y 微管蛋白以 13 个为一个环。然而,它们的位置相距太远,无法 以微管中发现的 13 条原丝为模板 (1)。这个结果提出了当前的假设:y- 微管蛋白小复合物可以通过结构转变被激活形成成核模板, 定位 y 微管蛋白以匹配形成 α-β 微管蛋白二聚体的方向和几何形状 微管。这种转变需要γ-微管蛋白小复合物的闭合和变构激活 (1)(未发表的数据)。我们将使用遗传、生化和细胞生物学方法来执行功能 y-微管蛋白复合物的体外和体内分析。我们的工作与结构和 Agard 实验室采用的生物物理方法。我们将共同详细了解 微管成核的物理和生物学基础。 在第三个目标中,我们从成核机制后退一步,研究整体的控制。 中心体的成核能力。中心体的成核能力扩大数倍 有丝分裂的准备(3)。这种扩张被称为中心体成熟。对于中心体 在高等真核生物中,一种模型开始出现,即中心粒周围的组装和成熟 材料涉及由有丝分裂激酶 PIkl 的蛋白质磷酸化驱动的核心蛋白的富集 和极光-A (4)。然而,中心粒周围材料的超微结构和成分都很复杂 阻碍了进步。所涉及的蛋白质的完整补充尚不清楚,上游信号 触发磷酸化的因素尚不清楚,磷酸化对成熟的影响仍有待确定 被发现。在酵母中,成核能力受到细胞周期事件和细胞倍性的调节。显着扩张 纺锤体极体的改变发生在有丝分裂检查点激活时。这提供了一个非常简单的方法 通过实验控制膨胀并研究其要求 (5-7)。在酵母中,所有结构 SPB 中的蛋白质是已知的,并且其许多磷酸化位点已被确定 (8)。在 此外,我们还通过遗传筛选鉴定了三种参与扩增过程的蛋白质 (9)。在 第三个目标,扩张和周转的动力学,这三种蛋白质在扩张过程中的作用 γ-微管蛋白复合物的磷酸调节作用将作为中心体模型进行检查 成熟。这项工作将补充 Winey 实验室项目的目标,该项目将确定 中心体组装中核心蛋白的磷酸化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trisha N. Davis其他文献

A Bayesian Integrative Structure Model of the Yeast Centrosome
  • DOI:
    10.1016/j.bpj.2017.11.240
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Shruthi Viswanath;Massimiliano Bonomi;Seung Joong Kim;Vadim A. Klenchin;Keenan Taylor;King C. Yabut;Neil T. Umbreit;Janet Meehl;Michele H. Jones;Javier Velazquez-Muriel;Mark Winey;Ivan Rayment;Trisha N. Davis;Andrej Sali;Eric D. Muller
  • 通讯作者:
    Eric D. Muller
Design of a hyperstable 60-subunit protein icosahedron
一种超稳定的 60 亚基蛋白质二十面体的设计
  • DOI:
    10.1038/nature18010
  • 发表时间:
    2016-06-15
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Yang Hsia;Jacob B. Bale;Shane Gonen;Dan Shi;William Sheffler;Kimberly K. Fong;Una Nattermann;Chunfu Xu;Po-Ssu Huang;Rashmi Ravichandran;Sue Yi;Trisha N. Davis;Tamir Gonen;Neil P. King;David Baker
  • 通讯作者:
    David Baker
Reconstitution Of Microtubule-driven Movement and Force Production by the Ndc80 Kinetochore Complex
  • DOI:
    10.1016/j.bpj.2008.12.3744
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew D. Franck;Andrew F. Powers;Daniel R. Gestaut;Jeremy Cooper;Beth Gracyzk;Ronnie R. Wei;Linda Wordeman;Trisha N. Davis;Charles L. Asbury
  • 通讯作者:
    Charles L. Asbury
The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components.
酿酒酵母纺锤体杆体:核心部件的结构和组装。
Genetic analysis of yeast spindle pole bodies.
酵母纺锤体极体的遗传分析。
  • DOI:
    10.1016/s0091-679x(01)67007-9
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Trisha N. Davis
  • 通讯作者:
    Trisha N. Davis

Trisha N. Davis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trisha N. Davis', 18)}}的其他基金

Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
  • 批准号:
    10551264
  • 财政年份:
    2019
  • 资助金额:
    $ 32.52万
  • 项目类别:
Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
  • 批准号:
    10335237
  • 财政年份:
    2019
  • 资助金额:
    $ 32.52万
  • 项目类别:
Molecular Analysis of Chromosome Segregation
染色体分离的分子分析
  • 批准号:
    10093081
  • 财政年份:
    2019
  • 资助金额:
    $ 32.52万
  • 项目类别:
Comprhensive Biology: Exploiting the Yeast Genome
综合生物学:利用酵母基因组
  • 批准号:
    8416531
  • 财政年份:
    2012
  • 资助金额:
    $ 32.52万
  • 项目类别:
YRC PUBLIC IMAGE REPOSITORY (YRC PIR)
YRC 公共图像存储库 (YRC PIR)
  • 批准号:
    8171214
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:
YEAST SPINDLE ASSEMBLY
酵母主轴组件
  • 批准号:
    8171460
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:
ADMINISTRATION OF THE YEAST RESOURCE CENTER
酵母资源中心的管理
  • 批准号:
    8171208
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:
ISOTOPE SIGNATURE BASED IDENTIFICATION OF CROSSLINKED PEPTIDES BY MS
通过 MS 基于同位素特征的交联肽鉴定
  • 批准号:
    8171348
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:
ANALYSIS OF TUBULIN
微管蛋白的分析
  • 批准号:
    8171249
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:
TUB4 COMPLEX IN YEAST
酵母中的 TUB4 复合物
  • 批准号:
    8171267
  • 财政年份:
    2010
  • 资助金额:
    $ 32.52万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 32.52万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了