High accuracy optical growth assay of 3D cellular systems
3D 细胞系统的高精度光学生长测定
基本信息
- 批准号:10094216
- 负责人:
- 金额:$ 45.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdoptedAlgorithmsAnatomyBasic ScienceBiological AssayBiomedical EngineeringCell TherapyCellsCellular biologyClinicClinicalClinical ResearchCollaborationsCoulter counterDiseaseDrug TargetingEscherichia coliExtracellular Matrix ProteinsFluorescenceFluorescence MicroscopyGrowthImageIndividualInterference MicroscopyKineticsLabelLaboratoriesLettersLightMammalian CellMeasurementMeasuresMethodologyMethodsMicroscopeMicroscopyMultimodal ImagingNeoplasm MetastasisNuclearOpticsOrganOrganoidsOsmotic PressurePerformancePhasePopulationProcessQuantitative MicroscopyRegulationResearchResearch PersonnelSpecimenStructureSubcellular structureSystemTechniquesTechnologyThickTimeTissue ModelTranslatingVariantVisionWorkbasebiomedical scientistcell growthdrug developmenthuman diseasehuman modelimaging modalityin vivoinstrumentinterestmathematical analysismultidisciplinarynovelscreeningtargeted treatmenttool
项目摘要
Project Summary
Growth regulation of mammalian cells has been described as "One of the last big unsolved problems in cell
biology". The ability to measure accurately the growth rate of single cells has been the main obstacle in
answering this question. From a clinical perspective, the basic understating of cell growth kinetics and how it is
modulated by disease and treatment will allow for more targeted drug development.
In recent years, there has been a significant interest in multidisciplinary work by biomedical engineers and
scientists with a vision of developing 3D ex vivo tissue models of human organ function, anatomy, and disease.
These 3D cellular systems are referred interchangeably as organoid, organotypic, or spheroid (spherical
organoid). Organoids self-assemble under proper conditions, i.e., when relevant components, such as
extracellular matrix (ECM) proteins, are present. Organoids are well documented to better recapitulate aspects
of in vivo organ function and human disease. The common tool for analysis of such systems has been confocal
(fluorescence) microscopy of fixed specimens. However, this approach does not reveal structural information in
the center of the construct and, most importantly, is limited in terms of time-lapse imaging. There is a critical
need for revealing subcellular structures in label-free mode with high contrast, which allows for dynamic, non-
destructive imaging. At the same time, quantifying the dry mass of the organoid and its cellular components will
inform on the basic organ function and disease, with and without treatment.
Despite this critical need, a unified, easy-to-use methodology to measure the growth rate of individual cells and
3D constructs is lacking. Until recently, the state-of-the-art method to assess a single cell growth curve was
using Coulter counters to measure the volume of a large number of cells, in combination with careful
mathematical analysis. For relatively simple cells such as Escherichia coli (E. coli), traditional microscopy
techniques have also been used to assess growth in great detail. In this type of method the assumption is that
volume is a good surrogate for mass; however, this assumption is not always valid, for example due to
variations in osmotic pressure.
We propose to develop a practical dry mass assay for 2D cell populations, as well as 3D organoids,
based on a novel imaging method developed in our laboratory: Spatial Light Interference Microscopy
(SLIM) for 2D cultures and Gradient Light Interference Microscopy (GLIM) for 3D organoids. SLIM/GLIM
takes advantage of the fact that optical phase delay accumulated through a live cell is linearly
proportional to the dry mass (non-aqueous content) of the cell. Due to its particular interferometric
principle, GLIM significantly suppresses multiple scattering and, as result, is capable of imaging thick
specimens such as organoid/spheroids. The project aims to optimize and translate the composite
SLIM/GLIM technology into a cell growth assay instrument that can be broadly adopted by researchers
in both the research and pharma markets.
项目摘要
哺乳动物细胞的生长调节被描述为“细胞生物学中最后一个未解决的大问题之一”。
生物学”。准确测量单细胞生长速率的能力一直是研究的主要障碍。
回答这个问题。从临床的角度来看,细胞生长动力学的基本理解以及它是如何
通过疾病和治疗的调节将允许更有针对性的药物开发。
近年来,生物医学工程师对多学科工作产生了浓厚的兴趣,
科学家们的愿景是开发人体器官功能、解剖学和疾病的3D离体组织模型。
这些3D细胞系统可互换地称为类器官、器官型或球状体(球形
类器官)。类器官在适当的条件下自组装,即,当相关组件,如
细胞外基质(ECM)蛋白。类器官被很好地记录,以更好地概括方面
体内器官功能和人类疾病的关系。共聚焦是分析这类系统的常用工具
固定标本的(荧光)显微镜检查。然而,这种方法并没有揭示结构信息,
最重要的是,在延时成像方面受到限制。存在一个临界
需要以高对比度的无标记模式揭示亚细胞结构,这允许动态的,非
破坏性成像。同时,定量类器官及其细胞组分的干质量将有助于
告知基本器官功能和疾病,治疗和不治疗。
尽管有这种迫切的需求,一个统一的,易于使用的方法来测量单个细胞的生长速度,
缺乏3D结构。直到最近,评估单细胞生长曲线的最先进方法还是
使用库尔特计数器测量大量细胞的体积,结合仔细的
数学分析对于相对简单的细胞,如大肠杆菌(E.大肠杆菌),传统显微镜
技术也被用来详细评估增长。在这种类型的方法中,假设
体积是质量的很好替代品;然而,这个假设并不总是有效的,例如,由于
渗透压的变化。
我们建议开发一种用于2D细胞群以及3D类器官的实用干质量测定法,
基于我们实验室开发的一种新的成像方法:空间光干涉显微术
梯度光干涉显微镜(GLIM)用于3D类器官。SLIM/GLIM
利用了通过活细胞累积的光学相位延迟是线性的这一事实,
与细胞的干质量(非水含量)成比例。由于其特殊的干涉
根据这一原理,GLIM显著抑制了多次散射,因此能够成像厚的
标本如类器官/球状体。该项目旨在优化和翻译复合材料
SLIM/GLIM技术转化为可被研究人员广泛采用的细胞生长测定仪器
在研究和制药市场上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Popescu其他文献
Gabriel Popescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Popescu', 18)}}的其他基金
Airyscan-based Confocal Phase Tomography for high-resolution 3D imaging of cell growth- Administrative supplement
基于 Airyscan 的共焦相位断层扫描,用于细胞生长的高分辨率 3D 成像 - 行政补充
- 批准号:
9895090 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Label free imaging of blood smears and tissue biopsies
血涂片和组织活检的无标记成像
- 批准号:
8058667 - 财政年份:2010
- 资助金额:
$ 45.91万 - 项目类别:
Label free imaging of blood smears and tissue biopsies
血涂片和组织活检的无标记成像
- 批准号:
7852748 - 财政年份:2010
- 资助金额:
$ 45.91万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 45.91万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 45.91万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 45.91万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 45.91万 - 项目类别:
Research Fellowships