Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
基本信息
- 批准号:10239066
- 负责人:
- 金额:$ 21.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-10 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnatomyAreaAuditoryBehaviorBrainBrain regionCaliforniaClinicalCollaborationsComputing MethodologiesDependenceDevelopmentDevicesDiagnosisDiffusion Magnetic Resonance ImagingDiseaseEffectivenessElectric StimulationElectrical Stimulation of the BrainElectrodesEpilepsyFunctional ImagingFundingGamblingGenerationsGoalsHumanIndividualKnowledgeLeadLocationMapsMethodsModalityNeurologic EffectParkinson DiseasePopulationProcessProtocols documentationScientistSiteSpeechSpeech PerceptionStimulusStrokeSurfaceSystemTechniquesTechnologyTestingTimeUnited StatesUnited States National Institutes of HealthUniversitiesVariantWorkbaseconditioningcortex mappingdesigndisabilityefficacy testingimaging systemimprovedlearning strategynervous system disorderneurophysiologyneurotechnologynew technologynovelrelating to nervous systemresponsetechnology research and development
项目摘要
Neurological disorders affect millions of people in the United States and worldwide. Better understanding of the
short-term changes and the persistent changes that result from precisely targeted electrical stimulation of brain
networks can lead to novel technologies that improve diagnosis and treatment of these disorders.
Intracranial recording/stimulation techniques using electrocorticographic (ECoG) electrodes on the brain surface
and/or depth electrodes (stereoencephalography (SEEG)) provide a powerful method for spatially and temporally
precise recording and stimulation, but current stimulation protocols are based largely on trial-and-error and thus
are probably suboptimal. Taking optimal advantage of ECoG/SEEG requires the ability to design adaptive record-
ing/stimulation protocols that induce specific beneficial changes in the brain processes underlying behavior. The
work proposed here will address this need by creating a stimulation-based system that can map cortical/subcortical
functional networks and can modulate these networks so as to restore brain function.
TR&D3's long-term goal is to develop and iteratively optimize a new generation of adaptive neurotechnologies that
can introduce predictable changes in brain networks, and to clinically test the efficacy of those technologies for
alleviating the devastating effects of neurological disorders such as stroke. To achieve this goal, TR&D3 has two
Specific Aims:
Aim 1. To establish the short-term changes in network activity and resulting behavior that are produced by electrical
stimulation. Aim 1 comprises two studies. The first study will use electrical stimulation to establish which and
how brain networks are activated by electrical stimulation of specific locations. The second study will determine
how input produced by electrical stimulation interacts with moment-by-moment variations in cortical excitability to
produce population-level responses.
Aim 2. To establish the persistent changes to network activity resulting from electrical stimulation. The first study
will determine to what extent stimulus-induced changes modify behavior in the short term and the long-term. The
second study will assess the dependence of these changes on stimulus amplitude.
These two aims will produce a stimulation-based functional imaging system. To validate and optimize this novel
system, TR&D3 will engage in two collaborative projects with scientists at the University of California (Berkeley)
and at MIT. Together, these collaborations will establish the effectiveness and value of the new stimulation-based
functional imaging system.
By accomplishing these aims, TR&D3 should produce new understanding of how electrical stimulation produces
short-term and persistent changes in brain function. It should also create a new clinical system that can map
brain networks and can target specific beneficial changes in function. Thus, this work should increase scientific
understanding and enhance treatment for a range of neurological disorders.
神经系统疾病影响着美国和全世界数百万人。更好地理解
短期的变化和持续的变化,导致精确针对大脑的电刺激
网络可以带来新的技术,改善这些疾病的诊断和治疗。
在脑表面使用皮层电图(ECoG)电极的颅内记录/刺激技术
和/或深度电极(立体脑成像(SEEG))提供了一种强大的方法,
精确的记录和刺激,但目前的刺激方案主要是基于试错法,
可能是次优的。充分利用ECoG/SEEG需要设计自适应记录的能力,
刺激/刺激协议,诱导大脑过程中的特定有益变化,这些变化是行为的基础。的
本文提出的工作将通过创建一个基于刺激的系统来解决这一需求,该系统可以映射皮层/皮层下
功能网络,并可以调节这些网络,以恢复大脑功能。
TR&D3的长期目标是开发和迭代优化新一代自适应神经技术,
可以在大脑网络中引入可预测的变化,并在临床上测试这些技术的有效性,
减轻神经系统疾病如中风的破坏性影响。为了实现这一目标,TR&D3有两个
具体目标:
目标1.为了建立网络活动的短期变化以及由电气干扰产生的行为,
刺激.目标1包括两项研究。第一项研究将使用电刺激来确定
大脑网络是如何被特定位置的电刺激激活的。第二项研究将确定
电刺激产生的输入如何与皮层兴奋性的瞬间变化相互作用,
产生人口水平的反应。
目标2.建立电刺激引起的网络活动的持续变化。第一次研究
将决定刺激引起的变化在短期和长期内改变行为的程度。的
第二项研究将评估这些变化对刺激幅度的依赖性。
这两个目标将产生一个基于刺激的功能成像系统。为了验证和优化这部小说
TR&D3将与加州大学(伯克利)的科学家合作开展两个项目
在MIT。总之,这些合作将建立新的刺激为基础的有效性和价值,
功能成像系统
通过实现这些目标,TR&D3应该对电刺激如何产生新的理解。
大脑功能的短期和持续变化。它还应该创建一个新的临床系统,
大脑网络,并可以针对特定的功能有益的变化。因此,这项工作应该增加科学性,
了解并加强对一系列神经系统疾病的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GERWIN SCHALK其他文献
GERWIN SCHALK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GERWIN SCHALK', 18)}}的其他基金
Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
- 批准号:
10017992 - 财政年份:2014
- 资助金额:
$ 21.06万 - 项目类别:
Technology Research and Development Project 3 (Characterizing and Modifying Cortical Processes)
技术研发项目3(表征和修改皮质过程)
- 批准号:
10456338 - 财政年份:2014
- 资助金额:
$ 21.06万 - 项目类别:
General Purpose Brain-Computer Interface (BCI) System
通用脑机接口(BCI)系统
- 批准号:
8045862 - 财政年份:2010
- 资助金额:
$ 21.06万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7123285 - 财政年份:2006
- 资助金额:
$ 21.06万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7642471 - 财政年份:2006
- 资助金额:
$ 21.06万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7454409 - 财政年份:2006
- 资助金额:
$ 21.06万 - 项目类别:
BCI2000: SOFTWARE FOR BRAIN-COMPUTER INTERFACE RESEARCH
BCI2000:脑机接口研究软件
- 批准号:
7279774 - 财政年份:2006
- 资助金额:
$ 21.06万 - 项目类别:
General Purpose Brain-Computer Interface (BCI) System
通用脑机接口(BCI)系统
- 批准号:
8131412 - 财政年份:2002
- 资助金额:
$ 21.06万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 21.06万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 21.06万 - 项目类别:
Studentship