Development and validation of embedded micro wireless strain sensor array for in vivo characterization of contact stress distribution in hip replacement
嵌入式微型无线应变传感器阵列的开发和验证,用于髋关节置换术中接触应力分布的体内表征
基本信息
- 批准号:10244923
- 负责人:
- 金额:$ 25.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2021-08-02
- 项目状态:已结题
- 来源:
- 关键词:AnimalsBathingBiomechanicsCadaverCenters of Research ExcellenceChemicalsClinical TrialsDataDevelopmentDevicesDiagnostic radiologic examinationDislocationsElementsEnvironmentFailureFutureGoalsHarvestHeadHealthHip JointHumanImplantJoint DislocationJoint ProsthesisJointsKneeLasersLeadLigamentsLimb structureLocationMeasurementMeasuresMechanical StressMedialMethodsMicrofluidicsModelingMusculoskeletalOperative Surgical ProceduresOrthopedic SurgeryOrthopedicsOryctolagus cuniculusOutcomeOutcomes ResearchPerformancePositioning AttributeProceduresReplacement ArthroplastyResearchResearch PersonnelResolutionSalineShoulderSpecimenStressSurfaceSurgeonTemperatureTestingTimeTotal Hip ReplacementTranslational ResearchValidationWireless Technologybiomaterial compatibilityfollow-uphip replacement arthroplastyimprovedin vivoinnovationmechanical propertiesmicrosensornovelpreventsensorsensor technologysimulationsuccesstoolultra-high molecular weight polyethylenevirtual human
项目摘要
SUMMARY
Total hip arthroplasty (THA) is one of the most widely performed orthopedic surgeries in the US. Unfortunately,
many follow-up revisions are often expensive and ineffective. Many simulation studies show that the failures
are caused by edge loading and excess stresses resulting from inappropriate component positions or size
selections during surgeries. The lack of an in vivo stress distribution characterization method at the joint
interface currently prevents the fundamental understanding of the effect of surgery factors such as the
positioning and choice of implants on the THA outcome. Our goal is to develop embedded, micro wireless
strain sensors for in vivo characterization of the biomechanical stress distribution and validate their usefulness
in THA. The project will harvest our recent breakthroughs in development of embeddable microfluidic sensors
that are highly sensitive to micro-strains. These sensors will be further developed into arrays and embedded
into the UHMWPE insert for in vivo measurement of the stress distributions. The sensor arrays embedded in
UNMWPE will be calibrated and validated using cadaver testing. We will also study the effect of the
radiographic inclination angles and anteversion angles on the stress distributions at the contact interface of the
hip joint. The underlying hypothesis is that the femoral/acetabular bearing surface stress distribution is strongly
correlated with the positioning, and the quantitative correlation (once established) can be used to guide THA
and improve its outcome. We will pursue three specific aims. Aim 1: Develop and calibrate micro wireless
strain sensors embedded within UHMWPE. Aim 2: Validate the strain mapping capability of the sensor array
embedded UHMWPE using cadaver testing and finite element modeling. Aim 3: Preliminarily evaluate the
embedded strain sensors in animal studies. This research is innovative in that it will provide a precise, in vivo
stress distribution characterization method at the hip joint interface, which is currently greatly needed but
unavailable. This research is significant in that we will 1) Establish the fabrication method of the highly
sensitive, micro-sized, biocompatible, embedded wireless strain sensors; 2) Enable the analysis of surface
stress distribution with different implant positioning; 3) Provide a useful tool for future fundamental studies on
the interrelated effects of other THA parameters, such as the component sizes and ligament tension, on the
biomechanical environment at femoral head/UHMWPE insert interface. Providing a new tool for in vivo
characterization of the stress distribution, this project integrates with the COBRE's research theme in virtual
human trial to improve musculoskeletal health.
概括
总髋关节置换术(THA)是美国表现最广泛的骨科手术之一。很遗憾,
许多后续修订通常昂贵且无效。许多模拟研究表明失败
是由边缘负荷和不适当的组件位置或大小引起的过多压力引起的
手术期间的选择。关节缺乏体内应力分布表征方法
目前,界面阻止了对手术因素的影响(例如
植入物在结果上的定位和选择。我们的目标是开发嵌入式,微型无线
应变传感器,用于体内表征生物力学应力分布并验证其实用性
在tha。该项目将收获我们最近在嵌入可嵌入的微流体传感器开发方面的突破
对微晶体高度敏感的。这些传感器将进一步发展为阵列并嵌入
进入UHMWPE插入物,以进行应力分布的体内测量。传感器阵列嵌入
使用尸体测试将校准和验证UNMWPE。我们还将研究
放射线倾斜角度和在应力分布的接触界面的接触界面的接触界面
髋关节。潜在的假设是股骨/髋臼轴承表面应力分布强烈
与定位相关,并且可以使用定量相关性(一旦建立)来指导tha
并改善其结果。我们将追求三个具体目标。目标1:开发和校准微型无线
应变传感器嵌入UHMWPE中。 AIM 2:验证传感器阵列的应变映射能力
使用尸体测试和有限元建模嵌入UHMWPE。目标3:初步评估
动物研究中的嵌入式应变传感器。这项研究具有创新性,因为它将提供一个精确的体内
髋关节接口处的应力分布表征方法,目前非常需要,但是
不可用。这项研究很重要,因为我们将1)建立高度的制造方法
敏感,微型,生物相容性,嵌入式无线应变传感器; 2)启用表面分析
用不同植入物定位的应力分布; 3)为将来的基础研究提供了有用的工具
其他THA参数的相互关联影响,例如成分大小和韧带张力,对
股头/UHMWPE插入界面的生物力学环境。为体内提供新工具
压力分布的表征,该项目与毛绒的研究主题合成虚拟的主题
改善肌肉骨骼健康的人类试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fei Peng其他文献
Fei Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fei Peng', 18)}}的其他基金
Novel Polymer-antibody Conjugates as Long-acting Therapeutics for Ocular Diseases
新型聚合物-抗体缀合物作为眼部疾病的长效治疗药物
- 批准号:
10760186 - 财政年份:2023
- 资助金额:
$ 25.58万 - 项目类别:
相似海外基金
Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
- 批准号:
10379220 - 财政年份:2020
- 资助金额:
$ 25.58万 - 项目类别:
Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
- 批准号:
10026454 - 财政年份:2020
- 资助金额:
$ 25.58万 - 项目类别:
Ice-free vitrification and nano warming technology for banking of cardiovascular structures.
用于心血管结构银行的无冰玻璃化和纳米加温技术。
- 批准号:
10587348 - 财政年份:2020
- 资助金额:
$ 25.58万 - 项目类别:
Product Development and Demonstration of Automated Mandibular Distractor
自动下颌牵开器产品开发与演示
- 批准号:
7985240 - 财政年份:2010
- 资助金额:
$ 25.58万 - 项目类别:
Product Development and Demonstration of Automated Mandibular Distractor
自动下颌牵开器产品开发与演示
- 批准号:
8010659 - 财政年份:2010
- 资助金额:
$ 25.58万 - 项目类别: