Mapping RNA protein interaction networks in the human genome
绘制人类基因组中 RNA 蛋白质相互作用网络的图谱
基本信息
- 批准号:10249195
- 负责人:
- 金额:$ 30.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-11 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAddressAlgorithmsAnimal ModelBenchmarkingBindingBinding SitesBiologicalBiological AssayCell LineCell physiologyCellsComplexComputational TechniqueComputer softwareDataData SetDevelopmentDiagnosisDiseaseEmbryoExonsFutureGene ExpressionGenesGenetic TranscriptionHepG2HumanHuman GenomeK-562K562 CellsKnowledgeLiverLocationMALAT1 geneMachine LearningMalignant NeoplasmsMapsMethodsMiningMusNatureNerve DegenerationOrganismPathway interactionsPatternPhenotypePhysiologyPlayProtein Binding DomainProteinsPublicationsRNARNA BindingRNA Recognition MotifRNA metabolismRNA-Binding ProteinsRNA-Protein InteractionResearch PersonnelResourcesRibonucleoproteinsRoleRunningStructureTimeTissuesTranscriptValidationbasebioinformatics toolcell typecomparativecomputer frameworkcomputer studiescomputing resourcescrosslinking and immunoprecipitation sequencingdeep sequencingdifferential expressiondisease-causing mutationexperiencefollow-upgenome-widehuman diseasehuman tissueimprovedinsightnovelonline resourcepredictive toolsprotein expressionsuccesstooltranscriptome sequencinguser-friendly
项目摘要
Detecting protein-RNA interactions is challenging–both experimentally and computationally–
because RNA transcripts are large in number, diverse in cellular location and function. As a
result, many RNA-binding proteins (RBPs) and their cognate motifs are likely unknown or
uncharacterized in humans as well as other model organisms. With increasing number of RBPs
implicated in human diseases, there is an urgent need for identifying and mapping functional
and phenotypic information for RBPs as well as to complete a map of the protein-RNA
interaction network. The objective here is to establish a robust computational technique that
integrates expression associations with sequence as well as several RBP centric features for
genome-scale prediction of binding motifs for hundreds of human RBPs to facilitate the
elucidation of their tissue-specific post-transcriptional networks. At the completion of this project,
we expect to have developed the most advanced tool for predicting human RBP motifs and
methods as well as resources which can facilitate the construction of tissue-specific RBP-RNA
networks. Our central hypothesis, supported by our initial genome-scale computational study
and assessment by comparative analysis of known RBP binding motifs is that, since many
RBPs are involved in different stages of RNA metabolism, exon expression level associations
with an RBP and other exon related features can be very powerful in identifying the binding
motifs of an RBP in a tissue-specific manner. The proposed integrated approach to
experimentally validate several binding motifs using CLIP-seq and to deconvolute global
posttranscriptional networks in specific cell/tissue types, using genome-wide data from protein
protection assays (POP-seq) will significantly enhance our capability of uncovering network
dynamics of RBPs in cell types and tissues. Such high-quality predictions based on
experimental validations, resulting from all the Aims which will be made public, can become a
venue for future experimental follow up to dissect the role of these important regulatory
molecules in different tissues and disease states. The proposed studies will make an impact in
the field as the first large-scale computational mapping of protein-RNA interaction networks in
the human tissues by taking our ability to predict RBP targets to the next level. The
complementary experience and expertise of investigators will make this project successful.
检测蛋白-RNA相互作用都是挑战 - 在实验和计算上 -
因为RNA转录本的数量很大,因此细胞位置和功能的潜水员。作为
结果,许多RNA结合蛋白(RBP)及其同源基序可能未知或
在人类和其他模型生物中未表征。随着RBP的增加
在人类疾病中实施,迫切需要识别和映射功能
RBP的表型信息以及完成蛋白质RNA的图
交互网络。这里的目的是建立一种强大的计算技术
与序列以及几个以RBP为中心的特征的集成表达关联
基因组规模预测数百个人RBP的结合基序以促进
阐明其组织特异性的转录后网络。该项目完成时,
我们希望已经开发了预测人类RBP图案的最先进的工具
方法以及可以促进组织特异性RBP-RNA的资源
网络。我们的中心假设,由我们最初的基因组规模计算研究支持
通过对已知RBP结合基序的比较分析评估,因为许多
RBP参与RNA代谢,外显子表达水平关联的不同阶段
使用RBP和其他外显子相关的功能可以在识别绑定方面非常强大
RBP的基序以组织特异性方式。提出的综合方法
实验性地验证了使用夹子序列的几个结合基序,并验证全局
使用来自蛋白质的全基因组数据,特定细胞/组织类型的转录后网络
保护测定(POP-SEQ)将显着增强我们发现网络的能力
RBP在细胞类型和组织中的动力学。基于
实验验证是由所有将公开的目标产生的,可以成为一个
未来实验后续的场地,以剖析这些重要调节的作用
不同组织和疾病状态中的分子。拟议的研究将影响
该领域是蛋白质-RNA相互作用网络的第一个大规模计算映射
人体组织通过利用我们将RBP靶标的能力提高到一个新水平的能力。这
调查人员的完全经验和专业知识将使该项目成功。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sarath Chandra Janga其他文献
Sarath Chandra Janga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sarath Chandra Janga', 18)}}的其他基金
DataWiz-IN scholars program for Biomedical Informatics workforce in Indiana
DataWiz-IN 印第安纳州生物医学信息学劳动力学者计划
- 批准号:
10631297 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
DataWiz-IN scholars program for Biomedical Informatics workforce in Indiana
DataWiz-IN 印第安纳州生物医学信息学劳动力学者计划
- 批准号:
10704230 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Confidential social network referrals for HIV testing (CONSORT)
HIV 检测的保密社交网络推荐 (CONSORT)
- 批准号:
10538222 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Where there is no death certificate: Using artificial intelligence to detect high-casualty epidemics from satellite imagery of burial sites - Resubmission - 1
在没有死亡证明的情况下:使用人工智能从埋葬地点的卫星图像中检测高伤亡流行病 - 重新提交 - 1
- 批准号:
10576534 - 财政年份:2022
- 资助金额:
$ 30.24万 - 项目类别:
Electrochemical Assay to Monitor Anti-TB Antibiotics
监测抗结核抗生素的电化学测定
- 批准号:
10010646 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别:
Pediatric Severe Traumatic Brain Injury in Latin America – A Randomized Trial Comparing Two Management Protocols
拉丁美洲儿童严重创伤性脑损伤 — 比较两种治疗方案的随机试验
- 批准号:
10458784 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别:
Pediatric Severe Traumatic Brain Injury in Latin America – A Randomized Trial Comparing Two Management Protocols
拉丁美洲儿童严重创伤性脑损伤 — 比较两种治疗方案的随机试验
- 批准号:
10297872 - 财政年份:2021
- 资助金额:
$ 30.24万 - 项目类别: