Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
基本信息
- 批准号:10250034
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AdultAdverse eventAlgorithmsAreaBrainCerebral PalsyCessation of lifeClinicalClinical ResearchCollectionComputer softwareConsumptionCritical CareDataData AnalysesDecision MakingDevelopmentEarly DiagnosisEarly treatmentElectronic Health RecordEnsureEnvironmentEventExplosionFatigueGenerationsGoalsGraphGrowthHealth PersonnelHemorrhageHospitalsInstitutional Review BoardsIntellectual functioning disabilityInternetInternet of ThingsIntubationMeasuresMedicalMedicineMethodologyMethodsModelingMonitorMorbidity - disease rateNeonatalNeonatal Intensive Care UnitsNeurosciencesNumerical valueNursing HomesNursing StaffOutcomePatient CarePatient-Focused OutcomesPatientsPerformancePhasePhysiciansPremature InfantProliferatingPsyche structureRetrospective cohortSepsisSmall Business Innovation Research GrantSourceSpecific qualifier valueSpecificityStatistical ComputingStreamStrokeSystemTelemedicineTestingTimeUniversitiesVery Low Birth Weight InfantWashingtoncommercializationdata qualitydata streamsdesignexperiencefallshigh riskimprovedinnovationinsightintraventricular hemorrhagelive streammedical schoolsmortalityphase 1 studyprediction algorithmpredictive modelingpredictive toolsprematuresensorsensor technologysoftware developmenttool
项目摘要
PROJECT SUMMARY/ABSTRACT
In this Phase I SBIR application for Analyzing Streaming Multi-Sensor Data for Predicting Stroke in Preterm
Infants, we propose developing statistical software for predicting adverse medical events using sensor data from
preterm infants. While medical sensor data is becoming widely available as part of the Internet of Medical Things
(IoMT), healthcare provider’s ability to use these data is limited by a lack of real-time predictive algorithms for
detecting deteriorating conditions in patients. Very low birth-weight preterm infants have a high risk of
experiencing intraventricular hemorrhage (IVH), a serious form of bleeding in the brain associated with high rates
of mortality and other serious conditions such as cerebral palsy. The algorithm we will develop uses an innovative
approach of transforming sensor data into graphs of associations and applies decision rules from statistical
process control to determine when a patient’s data indicates an adverse medical event such as an IVH. If
successful, this algorithm can be implemented in neonatal intensive care units (NICU) to provide real-time alerts
to hospital staff, allowing for early detection and treatment of IVH before it causes severe damage.
Two aims are proposed: to develop the software and test it on an existing, curated, large retrospective cohort of
NICU data collected at Washington University (Aim 1); and to compare the accuracy of the method and software
to existing predictive models of neonatal IVH and other outcomes (Aim 2). The first aim builds upon existing
proprietary software for object oriented data analysis and encompasses testing different methods of measuring
and relating sensor data, as well as evaluating decision rules for the graphical objects created from these data.
The second aim involves testing the accuracy and specificity of the alerts created by this method to ensure it
can detect adverse events significantly better than chance or existing algorithms, and to ensure it does not
substantially contribute to the problem of false alerts.
If successful, this project will lead to a Phase II proposal to test the algorithm in real-time inside an NICU with
nursing staff and develop the algorithm into a marketable software platform. Phase II would also involve
extending the testing of this software for other types of sensor data and medical events, such as monitoring
medical conditions for adult patients or nursing homes, etc. This project has commercialization potential both in
providing an important tool for improving patient care in NICUs, and in the broader context of developing tools
for predicting adverse medical events from all types of IoMT data.
项目总结/摘要
在此阶段I SBIR应用程序中,分析多传感器数据流以预测早产儿卒中
婴儿,我们建议开发统计软件,用于预测不良医疗事件使用传感器数据,
早产儿虽然医疗传感器数据作为医疗物联网的一部分正在变得广泛可用,
(IoMT),医疗保健提供商使用这些数据的能力受到缺乏实时预测算法的限制,
检测病人的病情恶化极低出生体重早产儿有很高的风险,
经历脑室内出血(IVH),这是一种严重的脑出血,
死亡率和其他严重疾病,如脑瘫。我们将开发的算法使用一种创新的
一种将传感器数据转换为关联图的方法,并应用来自统计的决策规则
过程控制,以确定患者的数据何时指示不良医疗事件,例如IVH。如果
如果成功,该算法可以在新生儿重症监护病房(NICU)中实施,以提供实时警报
对医院工作人员,允许早期发现和治疗IVH之前,它造成严重损害。
提出了两个目标:开发软件并在现有的,策划的,大型回顾性队列中进行测试。
在华盛顿大学收集的NICU数据(目标1);并比较方法和软件的准确性
新生儿IVH和其他结局的现有预测模型(目标2)。第一个目标是建立在现有的
面向对象的数据分析专有软件,包括测试不同的测量方法
关联传感器数据,以及评估从这些数据创建的图形对象的决策规则。
第二个目标是测试通过这种方法创建的警报的准确性和特异性,以确保
可以比偶然或现有算法更好地检测不良事件,并确保它不会
这在很大程度上导致了错误警报的问题。
如果成功,该项目将导致第二阶段的建议,在NICU内实时测试该算法,
护理人员和开发的算法成为一个适销对路的软件平台。第二阶段还将涉及
将该软件的测试扩展到其他类型的传感器数据和医疗事件,例如监测
成人患者或疗养院等的医疗条件。该项目具有商业化潜力,
为改善NICU的患者护理提供重要工具,并在更广泛的背景下开发工具
用于从所有类型的IoMT数据中预测不良医疗事件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WILLIAM D. SHANNON其他文献
WILLIAM D. SHANNON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WILLIAM D. SHANNON', 18)}}的其他基金
Object Oriented Data Analysis for Untargeted Metabolomics
非目标代谢组学的面向对象数据分析
- 批准号:
10010882 - 财政年份:2019
- 资助金额:
$ 25.6万 - 项目类别:
Administrative Supplement for 'Software Platform for Analyzing Alzheimer's and Parkinson's fMRI Connectomes'
“用于分析阿尔茨海默病和帕金森病 fMRI 连接体的软件平台”的行政补充
- 批准号:
9519378 - 财政年份:2016
- 资助金额:
$ 25.6万 - 项目类别:
Software Platform for Analyzing Alzheimer's and Parkinson's fMRI Connectomes
用于分析阿尔茨海默病和帕金森病 fMRI 连接体的软件平台
- 批准号:
9139293 - 财政年份:2016
- 资助金额:
$ 25.6万 - 项目类别:
NEW OBSERVATIONAL DATA ANALYSIS METHODS FOR COMPARATIVE EFFECTIVENESS RESEARCH
用于比较有效性研究的新观察数据分析方法
- 批准号:
8036735 - 财政年份:2010
- 资助金额:
$ 25.6万 - 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
- 批准号:
8071580 - 财政年份:2009
- 资助金额:
$ 25.6万 - 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
- 批准号:
7787041 - 财政年份:2009
- 资助金额:
$ 25.6万 - 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
- 批准号:
7583399 - 财政年份:2009
- 资助金额:
$ 25.6万 - 项目类别:
STATISTICAL METHODS FOR RECURSIVELY PARTITIONED TREES
递归分区树的统计方法
- 批准号:
6520234 - 财政年份:2000
- 资助金额:
$ 25.6万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 25.6万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 25.6万 - 项目类别: