BIOSTATISTICS FOR CONNECTOMES

连接体生物统计学

基本信息

  • 批准号:
    8517207
  • 负责人:
  • 金额:
    $ 18.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-26 至 2015-04-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal aims to develop object oriented data analysis (OODA) methods that are highly novel and complementary to existing methods of analysis of human brain scan connectomes, defined as graphs representing brain anatomical or functional connectivity. OODA is an emerging field of statistics where classical statistical approaches (e.g., hypothesis testing, regression, estimation, confidence intervals) are applied to data objects such as graphs or functions. By analyzing data objects directly we can avoid loss of information that necessarily occurs when data objects are transformed into numerical summary statistics. The conceptual leap in this proposal is that OODA statistical methods will be developed and applied directly to connectomes without needing to transform them into summary features which incur loss of information. By providing statistical tools that analyze sets of connectomes without loss of information, new insights into neurology and medicine may be achieved. The Specific Aims of this proposal are: (1) Develop OODA methods and software for analyzing human connectome data. More specifically, a mathematical framework for hypothesis testing, regression and Principal Components Analysis will be developed to model and analyze set of connectomes. The proposed methodology will allow to compare groups of connectomes (e.g., Is the brain structure/function different in cases versus controls?), to perform regression for modeling connectomes as a function of subject covariates such as age, gender, disease, or longitudinally (e.g., How does the brain structure/function change over time and does it change differently in males and females?), and to measure sources of structural or functional variation across populations of connectomes (e.g., What is the natural variability of brain structure/function within the population?); (2) Validate the tools developed in Specific Aim 1 using existing connectome datasets generated by our co-investigators to answer clinical questions relevant to their research objectives. The validation of the methodology to be developed in connectome data from will contribute to assess the biological significance of the methods proposed to be developed; and (3) Compare the performance of connectome OODA methods developed in Specific Aim 1 as complementary to existing methods of analysis of human brain scan connectomes by analyzing the same data used in Specific Aim 2 using graph-theoretical measurements.
描述(由申请人提供):本提案旨在开发面向对象的数据分析(OODA)方法,这些方法是高度新颖的,并且是对人脑扫描连接体分析的现有方法的补充,人脑扫描连接体被定义为表示大脑解剖或功能连接的图形。OODA是一个新兴的统计领域,经典的统计方法(例如,假设检验、回归、估计、置信区间)应用于诸如图形或函数的数据对象。通过直接分析数据对象,我们可以避免在将数据对象转换为数值汇总统计时必然发生的信息丢失。这个提议的概念性飞跃是,OODA统计方法将被开发并直接应用于连接体,而不需要将它们转换为导致信息丢失的摘要特征。通过提供分析连接组而不丢失信息的统计工具,可以实现对神经学和医学的新见解。本课题的具体目标是:(1)开发面向对象的连接体数据分析方法和软件。更具体地说,假设检验,回归和主成分分析的数学框架将被开发来建模和分析连接组。所提出的方法将允许比较连接体组(例如,病例与对照组的大脑结构/功能是否不同?),为了进行回归以将连接体建模为受试者协变量(例如年龄、性别、疾病)的函数,或纵向地(例如,大脑结构/功能如何随时间变化,男性和女性的变化是否不同?),并测量连接体群体之间的结构或功能变异的来源(例如,人口中大脑结构/功能的自然变异性是什么?); (2)使用我们的合作研究者生成的现有连接组数据集,验证Specific Aim 1中开发的工具,以回答与其研究目标相关的临床问题。在连接体数据中开发的方法的验证将有助于评估拟开发方法的生物学意义;以及(3)通过使用图论测量分析特定目标2中使用的相同数据,比较特定目标1中开发的连接体OODA方法的性能,作为对人脑扫描连接体分析的现有方法的补充。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

WILLIAM D. SHANNON其他文献

WILLIAM D. SHANNON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('WILLIAM D. SHANNON', 18)}}的其他基金

Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
  • 批准号:
    10250034
  • 财政年份:
    2021
  • 资助金额:
    $ 18.24万
  • 项目类别:
Object Oriented Data Analysis for Untargeted Metabolomics
非目标代谢组学的面向对象数据分析
  • 批准号:
    10010882
  • 财政年份:
    2019
  • 资助金额:
    $ 18.24万
  • 项目类别:
Administrative Supplement for 'Software Platform for Analyzing Alzheimer's and Parkinson's fMRI Connectomes'
“用于分析阿尔茨海默病和帕金森病 fMRI 连接体的软件平台”的行政补充
  • 批准号:
    9519378
  • 财政年份:
    2016
  • 资助金额:
    $ 18.24万
  • 项目类别:
Software Platform for Analyzing Alzheimer's and Parkinson's fMRI Connectomes
用于分析阿尔茨海默病和帕金森病 fMRI 连接体的软件平台
  • 批准号:
    9139293
  • 财政年份:
    2016
  • 资助金额:
    $ 18.24万
  • 项目类别:
BIOSTATISTICS FOR CONNECTOMES
连接体生物统计学
  • 批准号:
    8359149
  • 财政年份:
    2012
  • 资助金额:
    $ 18.24万
  • 项目类别:
NEW OBSERVATIONAL DATA ANALYSIS METHODS FOR COMPARATIVE EFFECTIVENESS RESEARCH
用于比较有效性研究的新观察数据分析方法
  • 批准号:
    8036735
  • 财政年份:
    2010
  • 资助金额:
    $ 18.24万
  • 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
  • 批准号:
    8071580
  • 财政年份:
    2009
  • 资助金额:
    $ 18.24万
  • 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
  • 批准号:
    7787041
  • 财政年份:
    2009
  • 资助金额:
    $ 18.24万
  • 项目类别:
NEW DATA ANALYSIS METHODS FOR ACTIGRAPHY IN SLEEP MEDICINE
睡眠医学中体动描记法的新数据分析方法
  • 批准号:
    7583399
  • 财政年份:
    2009
  • 资助金额:
    $ 18.24万
  • 项目类别:
STATISTICAL METHODS FOR RECURSIVELY PARTITIONED TREES
递归分区树的统计方法
  • 批准号:
    6520234
  • 财政年份:
    2000
  • 资助金额:
    $ 18.24万
  • 项目类别:

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 18.24万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 18.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了