Advancing standards and methodologies to generate real world evidence from real world data through a neonatal pilot project
推进标准和方法,通过新生儿试点项目从现实世界数据生成现实世界证据
基本信息
- 批准号:10250393
- 负责人:
- 金额:$ 174.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Critical Path Institute Proposal for RFA-FD-20-030
ABSTRACT
Historically, FDA has utilized real-world evidence (RWE) as a key component of its efforts to
assure post-marketing surveillance and evaluation of medical product safety. The 21st
Century Cures Act mandates FDA to develop a framework that expands the use of RWD
and RWE to support approvals of a new indications for an already approved drug. By
leveraging data generated through the normal practice of medicine, signals of safety and
efficacy for new indications can be identified in already approved therapies. However, as
most existing RWD was generated without the regulatory standards in mind, significant
challenges exist to ensure RWD is fit-for-purpose to generate RWE capable of informing
regulatory decisions. Efforts to use existing RWD to answer regulatory questions can identify
these challenges and corresponding solutions, but this endeavor requires a significant
amount of data and regulatory science expertise to fully optimize the use of RWD to extract
actionable RWE. The Critical Path Institute (C-Path) has that data expertise and will execute
a pilot project to facilitate the use of RWD to generate RWE in neonates, with learnings
being broadly applicable to other therapeutic areas. Each year in the U.S., 10% of neonates
are born preterm and there is an urgent need to improve survival and outcome. However,
there is minimal new drug development and most existing drugs have insufficient evidence
to support safety, efficacy, and dosage in this high-risk population. C-path will leverage its
Data Collaboration Center processes and infrastructure to develop an RWD Analytics
Platform. RWD will be accessed through collaborations with investigators and data
scientists. Specific algorithms and mechanisms will be implemented to extract RWD from
relevant sources (aggregated databases and EMRs), curate and standardize data, and
enable analyses to generate actionable RWE. When data are analyzed remotely, C-Path will
validate processing workflows for quality assurance. Data thus extracted will address two
key unmet needs in the neonatal population: 1) current lack of actionable reference values
for routine laboratory tests (as a function of gestational/postnatal age) and 2) lack of disease
progression model for bronchopulmonary dysplasia. A gaps analysis will identify key lessons
specific to neonates relating to the access, quality, extraction, curation, standardization, and
analysis of RWD, and potential solutions to optimally generate actionable RWE identified,
and shared with key stakeholders in the neonatal community. Lessons learned with this
high-risk population can then be generalized to other therapeutic areas.
RFA-FD-20-030的关键路径研究所建议
摘要
从历史上看,FDA一直将真实世界证据(RWE)作为其努力的关键组成部分
确保医疗产品安全的上市后监控和评估。21号
世纪治疗法案要求FDA开发一个框架,扩大RWD的使用
和莱茵支持批准已经批准的药物的新适应症。通过
利用通过正常医疗实践产生的数据、安全信号和
新适应症的疗效可以在已经批准的治疗中确定。然而,由于
大多数现有的RWD是在没有考虑监管标准的情况下产生的,意义重大
存在的挑战是确保RWD适合于生成能够提供信息的RWE
监管决定。利用现有的RWD回答监管问题的努力可以确定
这些挑战和相应的解决方案,但这一努力需要显著的
数据量和监管科学专业知识,以充分优化RWD的使用,以提取
可起诉的莱茵集团。关键路径研究所(C-PATH)拥有数据专业知识,并将执行
一个试点项目,以促进使用可再生能源在新生儿中产生可再生能源,并从中吸取教训
广泛适用于其他治疗领域。在美国,每年有10%的新生儿
早产儿早产,迫切需要提高存活率和结局。然而,
新药开发很少,而且大多数现有药物证据不足。
以支持这一高危人群的安全性、有效性和剂量。C-Path将利用其
开发RWD Analytics的数据协作中心流程和基础设施
站台。RWD将通过与调查人员和数据的合作来访问
科学家们。将实施特定的算法和机制来提取RWD
相关来源(聚合数据库和EMR),管理和标准化数据,以及
启用分析以生成可操作的RWE。远程分析数据时,C-Path将
验证处理工作流以确保质量。这样提取的数据将解决两个问题
新生儿人口中未得到满足的主要需求:1)目前缺乏可操作的参考值
常规实验室检查(作为孕期/出生后年龄的函数)和2)无疾病
支气管肺发育不良的进展模型。差距分析将找出主要教训
具体到新生儿,与获取、质量、提取、护理、标准化和
对RWD的分析,以及确定的以最佳方式生成可操作RWE的潜在解决方案,
并与新生儿社区的主要利益相关者分享。从这件事中吸取的教训
然后,高危人群可以推广到其他治疗领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan M. Davis其他文献
Combined effects of nitric oxide and hyperoxia on surfactant function and pulmonary inflammation.
一氧化氮和高氧对表面活性剂功能和肺部炎症的综合影响。
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
C. Robbins;Jonathan M. Davis;T. Merritt;J. Amirkhanian;N. Sahgal;F. Morin;Stuart Horowitz - 通讯作者:
Stuart Horowitz
Opioid Epidemic : Executive Summary Opioid Use in Pregnancy , Neonatal Abstinence Syndrome , and Childhood Outcomes
阿片类药物流行:执行摘要阿片类药物在妊娠、新生儿戒断综合征和儿童结局中的使用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. Reddy;Jonathan M. Davis;Zhaoxia Ren;Michael F. Greene - 通讯作者:
Michael F. Greene
Genomic sequencing: the case for equity of care in the era of personalized medicine
基因组测序:个性化医疗时代医疗公平的案例
- DOI:
10.1038/s41390-025-03869-6 - 发表时间:
2025-01-22 - 期刊:
- 影响因子:3.100
- 作者:
Lina Ghaloul-Gonzalez;Lisa S. Parker;Jonathan M. Davis;Jerry Vockley - 通讯作者:
Jerry Vockley
Localization and activity of recombinant human CuZn superoxide dismutase after intratracheal administration.
气管内给药后重组人铜锌超氧化物歧化酶的定位和活性。
- DOI:
10.1152/ajplung.1996.271.2.l230 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
N. Sahgal;Jonathan M. Davis;C. Robbins;Stuart Horowitz;E. Langenback;R. Perry;D. Colflesh;J. Tierney;Sanford R. Simon - 通讯作者:
Sanford R. Simon
Superoxide dismutase for preventing chronic lung disease in mechanically ventilated preterm infants.
超氧化物歧化酶用于预防机械通气早产儿的慢性肺部疾病。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:8.4
- 作者:
Gautham Suresh;Jonathan M. Davis;R. Soll - 通讯作者:
R. Soll
Jonathan M. Davis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan M. Davis', 18)}}的其他基金
Advancing standards and methodologies to generate real world evidence from real world data through a neonatal pilot project
推进标准和方法,通过新生儿试点项目从现实世界数据生成现实世界证据
- 批准号:
10183942 - 财政年份:2020
- 资助金额:
$ 174.82万 - 项目类别:
Advancing standards and methodologies to generate real world evidence from real world data through a neonatal pilot project
推进标准和方法,通过新生儿试点项目从现实世界数据生成现实世界证据
- 批准号:
10449111 - 财政年份:2020
- 资助金额:
$ 174.82万 - 项目类别:
Precision Medicine in the Diagnosis of Genetic Disorders in Neonates
精准医学在新生儿遗传性疾病诊断中的应用
- 批准号:
10460478 - 财政年份:2018
- 资助金额:
$ 174.82万 - 项目类别:
Precision Medicine in the Diagnosis of Genetic Disorders in Neonates
精准医学在新生儿遗传性疾病诊断中的应用
- 批准号:
9757835 - 财政年份:2018
- 资助金额:
$ 174.82万 - 项目类别:
Precision Medicine in the Diagnosis of Genetic Disorders in Neonates
精准医学在新生儿遗传性疾病诊断中的应用
- 批准号:
10227149 - 财政年份:2018
- 资助金额:
$ 174.82万 - 项目类别:
Precision Medicine in the Diagnosis of Genetic Disorders in Neonates
精准医学在新生儿遗传性疾病诊断中的应用
- 批准号:
9983229 - 财政年份:2018
- 资助金额:
$ 174.82万 - 项目类别:
Establishing Risk in Neonatal Abstinence Syndrome
确定新生儿戒断综合症的风险
- 批准号:
9318501 - 财政年份:2016
- 资助金额:
$ 174.82万 - 项目类别:
Phase 2 Study of rhCC10 to Prevent Neonatal Bronchopulmonary Dysplasia
rhCC10 预防新生儿支气管肺发育不良的 2 期研究
- 批准号:
8568629 - 财政年份:2013
- 资助金额:
$ 174.82万 - 项目类别:
Phase 2 Study of rhCC10 to Prevent Neonatal Bronchopulmonary Dysplasia
rhCC10 预防新生儿支气管肺发育不良的 2 期研究
- 批准号:
8925691 - 财政年份:2013
- 资助金额:
$ 174.82万 - 项目类别:
Phase 2 Study of rhCC10 to Prevent Neonatal Bronchopulmonary Dysplasia
rhCC10 预防新生儿支气管肺发育不良的 2 期研究
- 批准号:
9125662 - 财政年份:2013
- 资助金额:
$ 174.82万 - 项目类别:
相似海外基金
BRAIN CONNECTS: PatchLink, scalable tools for integrating connectomes, projectomes, and transcriptomes
大脑连接:PatchLink,用于集成连接组、投影组和转录组的可扩展工具
- 批准号:
10665493 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
ACTS (AD Clinical Trial Simulation): Developing Advanced Informatics Approaches for an Alzheimer's Disease Clinical Trial Simulation System
ACTS(AD 临床试验模拟):为阿尔茨海默病临床试验模拟系统开发先进的信息学方法
- 批准号:
10753675 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
- 批准号:
10572582 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Skills and Workforce Core- Ping/Watson
技能和劳动力核心 - Ping/Watson
- 批准号:
10863104 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Multi-Omics DACC: The Data Analysis and Coordination Center for the collaborative multi-omics for health and disease initiative
多组学 DACC:健康和疾病协作多组学计划的数据分析和协调中心
- 批准号:
10744561 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Data Analysis Center for Somatic Mosaicism Across Human Tissues Network
人体组织网络体细胞镶嵌数据分析中心
- 批准号:
10662721 - 财政年份:2023
- 资助金额:
$ 174.82万 - 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
- 批准号:
10482499 - 财政年份:2022
- 资助金额:
$ 174.82万 - 项目类别:














{{item.name}}会员




