Sensor Fusion System For Early And Accurate Fall Detection and Injury Protection

传感器融合系统可实现早期、准确的跌倒检测和伤害保护

基本信息

  • 批准号:
    10256574
  • 负责人:
  • 金额:
    $ 29.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-30 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Fall is the leading cause of injury among elderly. One in three adults over 65 falls each year. Of those who fall, 20% to 30% suffer moderate to severe injuries and increase their risk of early death. In 2015, the total medical costs related to fall injuries for people 65 and older was over $50 billion. Currently, there are devices that use motion sensors (accelerometers) to detect imminent falls and inflate micro-airbags located in garments worn by the users to protect from injury. The literature has shown that wearable solutions based on motion sensing have low detection accuracy and suffer from false-positive events (the airbag may erroneously deploy during daily activities after interpreting abrupt movements as falls). GraceFall, Inc. (GFI) will develop a patent protected fall detection device based on a sensor-fusion algorithm that combines brain (EEG) and body motion signals to allow reliable fall prediction and injury protection. Our initial findings, along with supporting literature, show that a reliable EEG signal preceding an unexpected loss of balance could be the key to developing a complete, reliable, ergonomic solution for fall detection and injury prevention, and would have a major impact on maintaining mobility and quality of life in our aging population. Accelerometers reflect body movement and it is difficult to distinguish between loss of stability and other non-fall related activities. The key difference between intended actions and unintended loss of balance is the appearance of a “startle” response that can be captured on most EEG channels. Using EEG sensors will allow us to identify the difference between a fall and other acceleration scenarios. Our goal is to create a device that primarily uses these reliable brain responses, coupled with motion sensors, to accurately detect loss of balance and stability, thereby preventing injuries due to falling. The goal of the proposed Phase I project is to provide a proof of concept for a future product. Using existing fall protection products that rely on motion sensing to detect an imminent fall, we will identify scenarios in which these products have either false-positive (the airbag erroneously deploying in daily activities after interpreting an abrupt movement as a fall) or false-negative (the airbag not deploying in a real fall scenario) events. We will simulate these same scenarios on human subjects (Aim 1) and we will characterize the physiological parameters of the startle response in an elderly population (Aim 2) to refine the sensor fusion algorithm. The purpose of this proposal is proof of concept that adding a sensor fusion algorithm that combines the EEG information with the acceleration data, improves the performance and reliability of the protection system.
项目总结/摘要 跌倒是老年人受伤的主要原因。65岁以上的成年人每年有三分之一福尔斯。在那些倒下的人中, 20%至30%的人遭受中度至重度伤害,并增加了他们过早死亡的风险。2015年,医疗总 65岁及以上的人因跌倒受伤而造成的损失超过500亿美元。目前,有一些设备使用 运动传感器(加速度计),用于检测即将发生的福尔斯跌倒并对位于服装中的微型气囊充气, 保护用户免受伤害。文献表明,基于运动传感的可穿戴解决方案 具有低的检测精度并且遭受假阳性事件(在使用过程中气囊可能错误地展开 在将突然运动解释为福尔斯之后的日常活动)。GraceFall,Inc. (GFI)将开发一项专利 基于结合大脑(EEG)和身体运动的传感器融合算法的受保护跌倒检测设备 信号,以实现可靠的跌倒预测和伤害保护。我们的初步发现,沿着支持文献, 表明,在意外失去平衡之前的可靠EEG信号可能是开发一种 完整、可靠、符合人体工程学的跌倒检测和伤害预防解决方案,并将产生重大影响 维持人口老化的流动性和生活质素。加速度计反映身体运动, 很难区分失去稳定性和其他非坠落相关活动。的关键区别 在有意的行动和无意的失去平衡之间,是一种“惊吓”反应的出现, 大多数脑电图频道都能捕捉到使用脑电图传感器将使我们能够识别跌倒和 其他加速场景。我们的目标是创造一种设备,主要利用这些可靠的大脑反应, 再加上运动传感器,以准确地检测失去平衡和稳定,从而防止受伤, 到坠落拟议的第一阶段项目的目标是为未来的产品提供概念验证。使用 现有的坠落保护产品依赖于运动传感来检测即将发生的坠落,我们将识别 其中这些产品具有假阳性(安全气囊在日常活动中错误地展开, 将突然运动解释为跌倒)或假阴性(安全气囊在真实的跌倒场景中未展开) 事件我们将在人类受试者身上模拟这些相同的场景(目标1),我们将描述 老年人群惊吓反应的生理参数(目标2),以完善传感器融合 算法该提案的目的是概念证明,增加传感器融合算法, 将脑电信息与加速度数据相结合,提高了保护的性能和可靠性 系统

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Localizing EEG Recordings Associated With a Balance Threat During Unexpected Postural Translations in Young and Elderly Adults.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emily A Keshner其他文献

Introduction to the special issue from the proceedings of the 2006 International Workshop on Virtual Reality in Rehabilitation
Reevaluating the theoretical model underlying the neurodevelopmental theory. A literature review.
重新评估神经发育理论的理论模型。
  • DOI:
    10.1093/ptj/61.7.1035
  • 发表时间:
    1981
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Emily A Keshner
  • 通讯作者:
    Emily A Keshner

Emily A Keshner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emily A Keshner', 18)}}的其他基金

Combined Cognitive Neuroscience/International Virtual Rehabilitation Conferences
联合认知神经科学/国际虚拟康复会议
  • 批准号:
    8458311
  • 财政年份:
    2012
  • 资助金额:
    $ 29.89万
  • 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
  • 批准号:
    7890167
  • 财政年份:
    2009
  • 资助金额:
    $ 29.89万
  • 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
  • 批准号:
    7285957
  • 财政年份:
    2006
  • 资助金额:
    $ 29.89万
  • 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
  • 批准号:
    7478552
  • 财政年份:
    2006
  • 资助金额:
    $ 29.89万
  • 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
  • 批准号:
    7101515
  • 财政年份:
    2006
  • 资助金额:
    $ 29.89万
  • 项目类别:
Posture and Orientation in Older Adults and Post-Stroke
老年人和中风后的姿势和方向
  • 批准号:
    7670243
  • 财政年份:
    2006
  • 资助金额:
    $ 29.89万
  • 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
  • 批准号:
    6696753
  • 财政年份:
    2003
  • 资助金额:
    $ 29.89万
  • 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
  • 批准号:
    6839993
  • 财政年份:
    2003
  • 资助金额:
    $ 29.89万
  • 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
  • 批准号:
    6990535
  • 财政年份:
    2003
  • 资助金额:
    $ 29.89万
  • 项目类别:
Minimizing Instability with Dynamic Visual Inputs
通过动态视觉输入最大限度地减少不稳定性
  • 批准号:
    7162947
  • 财政年份:
    2003
  • 资助金额:
    $ 29.89万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 29.89万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 29.89万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 29.89万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 29.89万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Studentship Programs
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了