Dialysis access monitoring using a digital stethoscope-based deep learning system
使用基于数字听诊器的深度学习系统进行透析访问监控
基本信息
- 批准号:10255460
- 负责人:
- 金额:$ 29.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:Academic Medical CentersAlgorithmsArteriovenous fistulaArtificial IntelligenceAuscultationBlood VesselsBlood flowBluetoothCaringCellular PhoneClassificationClinicCollectionDataData SetDatabasesDetectionDialysis procedureDistalEarly InterventionEducational process of instructingEkoEnd stage renal failureEnrollmentEnsureFailureFistulaGoalsHealthHealthcare SystemsHeart SoundsHemodialysisHomeInternetInterventionInterventional radiologyLeadLegal patentLife ExpectancyLiquid substanceLocationMaintenanceMeasurementMedicareMeta-AnalysisModelingMonitorNephrologyNetwork-basedNeural Network SimulationObservational StudyOperative Surgical ProceduresOutcomePatientsPerformancePersonal ComputersPhasePhysical ExaminationPositioning AttributeProceduresQuality of lifeRenal Replacement TherapyResearch DesignSmall Business Innovation Research GrantStandardizationStenosisStethoscopesStudy SubjectSurvival RateSystemTablet ComputerTimeTrainingTransplantationUltrasonographyValidationalgorithm traininganalogarteriovenous graftbaseclinical databaseclinical decision supportclinically relevantcloud basedcloud softwarecommercializationconvolutional neural networkcostdata streamsdeep learningdeep learning algorithmdeep neural networkdigitalevaluation/testingexperiencefollow-upimprovedinnovationinsightpatient home careprematurerecruitskillssoundstandard of caresupervised learningsystematic reviewtool
项目摘要
This SBIR Phase I project will develop a deep learning-based algorithm to analyze the sound of blood
flow in newly created arteriovenous fistulas (AVFs) used for hemodialysis access. This monitoring tool
can help to identify fistulas that are unlikely to mature in patients who need surgical intervention to
achieve successful maturation. The specific aims of the study are (1) to create the world’s first deep
learning-scale database of newly created AVF sounds from hemodialysis patients, and (2) develop and
evaluate the performance of a deep learning classification model trained via semi-supervised learning to
discriminate between patients with AVFs likely to mature and patients with AVFs unlikely to mature. By
integrating this deep learning algorithm into Eko’s mobile and cloud software platform, we anticipate this algorithm will enable better monitoring of the maturation process for newly created fistulas. During Phase I of the project, we will recruit study subjects in access centers at the University of North Carolina (UNC).
这个SBIR一期项目将开发一种基于深度学习的算法来分析血液的声音
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PRABIR ROY-CHAUDHURY其他文献
PRABIR ROY-CHAUDHURY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PRABIR ROY-CHAUDHURY', 18)}}的其他基金
Modulation of VSMC phenotype through the Insulin Receptor Substrate-1/Kruppel-like factor-4 signal transduction pathway: a Novel Target for AVF Dysfunction
通过胰岛素受体底物 1/Kruppel 样因子 4 信号转导途径调节 VSMC 表型:AVF 功能障碍的新靶点
- 批准号:
10612048 - 财政年份:2022
- 资助金额:
$ 29.94万 - 项目类别:
Photodynamic Therapy to Prevent Arteriovenous Fistula Maturation Failure
光动力疗法预防动静脉内瘘成熟失败
- 批准号:
9918649 - 财政年份:2020
- 资助金额:
$ 29.94万 - 项目类别:
North Carolina Translational and Clinical Science Institute (NC TraCS) TL1
北卡罗来纳州转化与临床科学研究所 (NC TraCS) TL1
- 批准号:
10116519 - 财政年份:2018
- 资助金额:
$ 29.94万 - 项目类别:
North Carolina Translational and Clinical Science Institute (NC TraCS) TL1
北卡罗来纳州转化与临床科学研究所 (NC TraCS) TL1
- 批准号:
10364744 - 财政年份:2018
- 资助金额:
$ 29.94万 - 项目类别:
Localized Delivery of Sirolimus to Hemodialysis Vascular Access Grafts
西罗莫司局部递送至血液透析血管通路移植物
- 批准号:
9262391 - 财政年份:2017
- 资助金额:
$ 29.94万 - 项目类别:
Localized Delivery of Sirolimus to Hemodialysis Vascular Access Grafts
西罗莫司局部递送至血液透析血管通路移植物
- 批准号:
10017609 - 财政年份:2017
- 资助金额:
$ 29.94万 - 项目类别:
HELical Biodegradable Photochemical(HELP)Stents for AVF Maturation
用于 AVF 成熟的 HELical 可生物降解光化学 (HELP) 支架
- 批准号:
9202757 - 财政年份:2016
- 资助金额:
$ 29.94万 - 项目类别:
Hemodynamics, Uremia & Vascular Biology: Interactive Pathways for AVF Maturation
血流动力学、尿毒症
- 批准号:
8635063 - 财政年份:2013
- 资助金额:
$ 29.94万 - 项目类别:
A luminal vascular coating to reduce time to maturation and failures of AV-Fistulas for hemodialysis access
管腔血管涂层可减少血液透析通路中动静脉瘘的成熟时间和失败
- 批准号:
8906287 - 财政年份:2013
- 资助金额:
$ 29.94万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.94万 - 项目类别:
Continuing Grant