Determining mechanisms of innate immune modulation by ADP-ribosylation
通过 ADP-核糖基化确定先天免疫调节机制
基本信息
- 批准号:10256655
- 负责人:
- 金额:$ 35.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:ADP Ribose TransferasesADP ribosylationAddressAdenosine Diphosphate RiboseAffectAntiviral AgentsAntiviral ResponseAntiviral TherapyAutomobile DrivingBiological ProcessBiologyCell Culture TechniquesCellsChiropteraCommunicable DiseasesCoronavirusFamilyFoundationsGoalsHydrolaseHypersensitivityImmune responseImpairmentInfectionInnate Immune ResponseInterferonsKnock-outKnowledgeLeadMalignant NeoplasmsMediatingMissionModelingMurine hepatitis virusNational Institute of General Medical SciencesPathway interactionsPhenotypePhosphorylationPost-Translational Protein ProcessingProcessProteinsRNA replicationResearchResearch PersonnelRoleSystemTogaviridaeTranslationsViralViral hepatitisVirusVirus DiseasesVirus ReplicationWorkhuman diseaseimmunoregulationinhibitor/antagonistinnate immune mechanismsinnovationmutantnovelpathogenic virusprotein functionresponse
项目摘要
PROJECT SUMMARY
ADP-ribosylation is an important post-translational modification that directly influences several
biological processes including cancer, allergy, and infectious disease. ADP-ribose can be added to proteins as
one or more consecutive units by ADP-ribosyltransferases, also termed PARPs, resulting in mono- or poly-
ADP-ribosylation (mAR or pAR). Most mARylating PARPs are upregulated by interferon (IFN) upon virus
infection and several are predicted to have antiviral functions. In addition, several viral families, including the
Coronaviridae and Togaviridae, encode for macrodomain proteins that have mono-ADP-ribosyl hydrolase
(ARH) activity. This activity allows these viruses the ability to specifically counteract the effects of mAR, further
implicating mAR in the mammalian antiviral response. Despite these findings, there are only a few known
examples where mAR is known to inhibit virus replication. This is largely due to the lack of cell culture models
of virus infections where the mAR status of a cell can be specifically controlled, such as models using mutant
viruses or PARP knockout cells that have significant phenotypes. Importantly, the PI has established a virus
infection system using a model coronavirus, Murine Hepatitis Virus (MHV), where virus lacking ARH activity is
i) significantly impaired in virus replication and ii) independently induces a robust IFN response. These
phenotypes are reversed by PARP inhibitors, establishing mAR as a key factor driving this anti-viral response.
The investigator’s long-term goal is to determine mechanistically how mAR inhibits virus replication and
enhances the innate immune response following virus infection. This gap in knowledge will be resolved by
answering the following questions: 1) How does mAR inhibit MHV infection? Does it inhibit the entry, RNA
replication, protein translation, assembly, or release of MHV? 2) What step(s) of the IFN induction pathway is
enhanced by mAR, and does mAR also affect the IFN response in bats, which are known to harbor many
highly pathogenic viruses? 3) What proteins are modified by PARPs following virus infection and which
substrates are relevant for specific phenotypes? The rationale for this research is that it will enhance our
understanding of mAR, including its ability to modulate protein function and will uncover novel cellular proteins
or processes that mediate virus replication. The work is innovative because: i) it will bridge a significant
knowledge gap between ADP-ribose biology, the innate immune response, and virus replication; ii) it utilizes
unique models of infection utilizing both mutant viruses and PARP knockout cells; and iii) will be the first to
address the role of mAR in bats. Finally, these projects are significant and relevant to the NIGMS mission
because they will provide a thorough understanding of how mAR impacts the anti-viral response that could lay
the foundation for advances in the treatment of virus infections or other human diseases impacted by mAR.
项目总结
ADP-核糖化是一种重要的翻译后修饰,直接影响几种
包括癌症、过敏和传染病在内的生物过程。ADP-核糖可以添加到蛋白质中,作为
ADP-核糖基转移酶的一个或多个连续单位,也称为PAPS,导致单-或多-
ADP-核糖化(MAR或PAR)。大多数核糖化蛋白被干扰素(IFN)上调
据预测,感染和几种病毒具有抗病毒功能。此外,几个病毒家族,包括
冠状病毒科和冠状病毒科,编码具有单-ADP-核糖水解酶的大结构域蛋白
(ARH)活动。这种活动使这些病毒能够特别地中和MAR的影响,进一步
这表明MAR参与了哺乳动物的抗病毒反应。尽管有这些发现,但已知的只有几个
已知MAR可抑制病毒复制的例子。这在很大程度上是由于缺乏细胞培养模型
可以特别控制细胞的MAR状态的病毒感染,例如使用突变的模型
具有显著表型的病毒或PARP基因敲除细胞。重要的是,私家侦探建立了一种病毒
使用模型冠状病毒小鼠肝炎病毒(MHV)的感染系统,其中缺乏ARH活性的病毒
I)病毒复制显著受损,ii)独立地诱导强烈的干扰素反应。这些
表型被PARP抑制剂逆转,使MAR成为驱动这种抗病毒反应的关键因素。
研究人员的长期目标是从机制上确定MAR如何抑制病毒复制和
增强病毒感染后的先天免疫反应。这一知识差距将通过以下方式解决
回答以下问题:1)MAR如何抑制MHV感染?它能抑制进入吗,核糖核酸
MHV的复制、蛋白质翻译、组装或释放?2)干扰素诱导途径的哪一步(S)
被MAR增强,MAR是否也影响蝙蝠的干扰素反应,已知蝙蝠体内有许多
高致病性病毒?3)病毒感染后,PARPS会修饰哪些蛋白质?
底物与特定的表型有关吗?这项研究的基本原理是它将增强我们的
了解MAR,包括其调节蛋白质功能的能力,并将发现新的细胞蛋白质
或调节病毒复制的过程。这项工作具有创新性,因为:i)它将架起一座意义重大的
ADP-核糖生物学、先天免疫反应和病毒复制之间的知识差距;ii)它利用
利用突变病毒和PARP基因敲除细胞的独特感染模型;以及iii)将是第一个
阐述MAR在蝙蝠中的作用。最后,这些项目对NIGMS的任务意义重大且相关
因为它们将提供对MAR如何影响可能产生的抗病毒反应的透彻理解
为在治疗受MAR影响的病毒感染或其他人类疾病方面取得进展奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony R Fehr其他文献
Anthony R Fehr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony R Fehr', 18)}}的其他基金
Determining mechanisms of innate immune modulation by ADP-ribosylation
通过 ADP-核糖基化确定先天免疫调节机制
- 批准号:
10386112 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Determining mechanisms of innate immune modulation by ADP-ribosylation
通过 ADP-核糖基化确定先天免疫调节机制
- 批准号:
10027966 - 财政年份:2020
- 资助金额:
$ 35.96万 - 项目类别:
Investigating How ADP-ribosylation Impacts Innate Immunity During Coronavirus Infection
研究 ADP-核糖基化如何影响冠状病毒感染期间的先天免疫
- 批准号:
9428897 - 财政年份:2018
- 资助金额:
$ 35.96万 - 项目类别:
Deciphering the Role of the Coronavirus Macro Domain in SARS-CoV Infection
破译冠状病毒宏结构域在 SARS-CoV 感染中的作用
- 批准号:
8781200 - 财政年份:2014
- 资助金额:
$ 35.96万 - 项目类别:
相似海外基金
Control of genomic integrity and virulence of Aspergillus fumigatus by ADP-ribosylation.
通过 ADP-核糖基化控制烟曲霉的基因组完整性和毒力。
- 批准号:
MR/X007472/1 - 财政年份:2023
- 资助金额:
$ 35.96万 - 项目类别:
Fellowship
Understanding the impact of DNA ADP-ribosylation on telomere function in cancer cells
了解 DNA ADP-核糖基化对癌细胞端粒功能的影响
- 批准号:
10751121 - 财政年份:2023
- 资助金额:
$ 35.96万 - 项目类别:
Composition and function of telomeric multi-protein complexes and their regulation by ADP-ribosylation
端粒多蛋白复合物的组成和功能及其ADP-核糖基化的调节
- 批准号:
2748032 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Studentship
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10524783 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Regulation of DNA repair by histone ADP-ribosylation
组蛋白 ADP 核糖基化调节 DNA 修复
- 批准号:
MR/W017350/1 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Research Grant
Regulation and function of site-specific protein poly-ADP-ribosylation
位点特异性蛋白质聚 ADP 核糖基化的调控和功能
- 批准号:
10668492 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
ADP-ribosylation of DNA in Mycobacterium tuberculosis
结核分枝杆菌 DNA 的 ADP-核糖基化
- 批准号:
BB/W016613/1 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Research Grant
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10610165 - 财政年份:2022
- 资助金额:
$ 35.96万 - 项目类别:
Role of Transcription Factor ADP-ribosylation in Breast Cancer Biology
转录因子 ADP-核糖基化在乳腺癌生物学中的作用
- 批准号:
10593900 - 财政年份:2021
- 资助金额:
$ 35.96万 - 项目类别:
A Chemical Footprinting Approach towards Poly-ADP-Ribosylation-regulated Biomolecular Condensation
聚 ADP 核糖基化调节生物分子缩合的化学足迹方法
- 批准号:
10389853 - 财政年份:2021
- 资助金额:
$ 35.96万 - 项目类别:














{{item.name}}会员




