Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
基本信息
- 批准号:10263046
- 负责人:
- 金额:$ 296.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAnimal ModelAversive StimulusAxonBasal GangliaBehaviorBehavioralBenzodiazepinesBiochemical MarkersCellsCollaborationsComputer ModelsCorpus striatum structureDendritesDopamineDorsalExhibitsFollow-Up StudiesGABA-A ReceptorGABA-B ReceptorGlobus PallidusGlutamatesGoalsHeterogeneityLaboratoriesLaser Scanning MicroscopyMapsMediatingMidbrain structureMotivationNational Institute of Mental HealthNational Institute on Alcohol Abuse and AlcoholismNeuronsPatternPharmacologyPlayPositioning AttributePropertyPublishingReportingResearchResolutionRewardsSignal TransductionSubstantia nigra structureSynapsesTechniquesTransgenic AnimalsUniversitiesVeronicaVertebral columnWorkdopamine systemdopaminergic neuronexperimental studyin vivointerestmedical schoolsmotor learningneural circuitneuronal cell bodyoptogeneticspars compactapatch clampprofessorreceptorstriosometenure tracktwo-photon
项目摘要
The work in our laboratory focuses on the cellular and subcellular principles of excitability and integration of neurons in the midbrain dopamine system. A major interest of the lab is identifying functionally unique subpopulations of midbrain dopamine neurons and understanding how these neurons are controlled by basal ganglia circuits and ultimately how they contribute to behavior. In vivo experiments show that a subset of substantia nigra pars compacta (SNc) dopaminergic neurons exhibit rebound activity at the termination of an aversive stimulus. However, the local neural circuits that underly this behavior are currently unknown. We previously examined the intrinsic properties dopamine neurons and identified a subpopulation of cells in the ventral SNc that exhibits distinct rebound firing properties (Evans et al., JNeurosci 2017). We are continuing this research by focusing on how inhibitory inputs from basal ganglia control SNc dopaminergic neurons. In a recent project, we functionally mapped the inhibitory projection from four (4) separate genetically-defined inhibitory subpopulations in the striatum (striosome and matrix), globus pallidus (Pvalb and Lhx6) at subcellular resolution. We found that the striosomal inputs selectively inhibit the ventral SNr dendrite of the dopamine neurons. Although isolated to the SNr dendrite, this connection exerts strong control over the entire cell and facilitates rebounding through relief of GABA-B receptors. Therefore, inhibition from striosomes onto SNc dopamine neurons is optimally placed to produce rebound firing. This study has been submitted and is currently in press (Evans et al., Cell Reports 2020). We are currently performing follow-up studies that examine the behavioral consequences of activity in these subpopulations which are performing in collaboration with Dr. Yogita Chudasama (NIMH) and a separate collaboration with Dr. Heather Cameron (NIMH). The first author of this study, Dr. Rebekah Evans, will be moving to an independent tenure track Assistant Professor position at Georgetown University starting in Jan 2021. A second direction in the lab focuses on understanding how modulation of axonal excitability influences dopamine release. Specifically, we performed direct recordings from the cut ends of dopaminergic neuron axons, including from branching axons within the dorsal striatum. Our results provide definitive evidence for the existence of GABA-A receptor-mediated conductances, which we found were depolarizing but decreased the amplitude of a propagating action potential through shunting inhibition. Finally, we found that these receptors are sensitive to benzodiazepines, which highlights the importance of including axonal mechanisms when considering the action of benzodiazepines and other pharmacology that target GABA-A receptors. This study was submitted and has recently been published in eLife (Kramer et al. eLife 2020). The study was performed in collaboration with Dr. Hoon Shin and Dr. Veronica Alvarez (NIAAA). In follow-up studies, we have been examining how input from striatal local circuitry controls dopamine release and axonal excitability in collaboration with Dr. Pascal Kaeser at Harvard Medical School.
我们实验室的工作重点是中脑多巴胺系统中神经元的兴奋性和整合的细胞和亚细胞原理。该实验室的一个主要兴趣是识别中脑多巴胺神经元功能独特的亚群,并了解这些神经元是如何受基底节回路控制的,最终它们是如何对行为做出贡献的。体内实验表明,黑质致密部(SNC)多巴胺能神经元的一部分在厌恶刺激终止时表现出反弹活动。然而,这种行为背后的局部神经回路目前尚不清楚。我们先前研究了多巴胺神经元的内在特性,并在腹侧SNC中发现了一组显示出明显的反弹放电特性的细胞亚群(Evans等人,JNeurosci 2017)。我们继续这项研究的重点是来自基底节的抑制性输入如何控制黑质多巴胺能神经元。在最近的一个项目中,我们在亚细胞分辨率下对纹状体(纹状体和基质)、苍白球(Pvalb和Lhx6)中四(4)个不同的基因定义的抑制亚群的抑制投影进行了功能映射。我们发现纹状体的输入选择性地抑制了多巴胺神经元腹侧的SNR树突。虽然这种连接孤立于SNR树突,但它对整个细胞施加强大的控制,并通过释放GABA-B受体促进反弹。因此,纹状体对黑质多巴胺神经元的抑制是产生反弹放电的最佳位置。这项研究已经提交,目前正在印刷中(Evans等人,《2020年细胞报告》)。我们目前正在进行后续研究,检查这些亚群中活动的行为后果,这些亚群与Yogita Chudasama博士(NIMH)合作,以及与Heather Cameron博士(NIMH)单独合作。这项研究的第一作者丽贝卡·埃文斯博士将于2021年1月开始在乔治敦大学担任独立的终身教职跟踪助理教授职位。实验室的第二个方向是了解轴突兴奋性的调节如何影响多巴胺的释放。具体地说,我们直接记录了多巴胺能神经元轴突的切断端,包括背侧纹状体内的分支轴突。我们的结果为GABA-A受体介导的电导的存在提供了确凿的证据,我们发现这种电导具有去极化作用,但通过分流抑制降低了传播动作电位的幅度。最后,我们发现这些受体对苯二氮卓类药物敏感,这突显了当考虑苯二氮卓类药物和其他针对GABA-A受体的药理作用时,包括轴突机制的重要性。这项研究已提交并最近发表在eLife(Kramer等人)上。ELife 2020)。这项研究是与Hoon Shin博士和Veronica Alvarez博士(NIAAA)合作进行的。在后续研究中,我们一直在与哈佛医学院的帕斯卡尔·凯瑟尔博士合作,研究纹状体局部回路的输入如何控制多巴胺释放和轴突兴奋性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ZAYD M KHALIQ其他文献
ZAYD M KHALIQ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ZAYD M KHALIQ', 18)}}的其他基金
Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
- 批准号:
7001228 - 财政年份:2004
- 资助金额:
$ 296.67万 - 项目类别:
Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
- 批准号:
6747153 - 财政年份:2004
- 资助金额:
$ 296.67万 - 项目类别:
Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
- 批准号:
6878541 - 财政年份:2004
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
8940124 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
10708621 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
- 批准号:
10263060 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
8557101 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
10018694 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
9157570 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
- 批准号:
10915986 - 财政年份:
- 资助金额:
$ 296.67万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 296.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists