Synaptic integration and intrinsic firing properties of basal ganglia neurons

基底节神经元的突触整合和内在放电特性

基本信息

项目摘要

Our laboratory studies the cellular and subcellular principles of integration and excitability in dopamine-releasing neurons located in the midbrain. A major interest of the lab is identifying functionally unique subpopulations of midbrain dopamine neurons and understanding how these neurons contribute to the basal ganglia circuit. To this end, one project in the lab focuses on understanding how inhibitory inputs may control subpopulations of dopaminergic neurons within the substantia nigra pars compacta (SNc). SNc dopaminergic neurons pause their activity in response to during aversive events. In vivo experiments show that a subset of these neurons fire rebound bursts of action potentials or show rebound calcium activity following the aversive pause in activity. However, the local neural circuits that underly this behavior are currently unknown. We have been using two-photon imaging and local optogenetic activation to functionally map the inhibitory inputs from basal ganglia nuclei onto dopamine neurons. We compare the strength and location of five (5) separate genetically-defined inhibitory subpopulations in the striatum (striosome and matrix), globus pallidus (Pvalb and Lhx6), and substantia nigra pars reticulata (SNr). We find that the striosomal inputs selectively inhibit the ventrally-projecting SNr dendrite of the dopamine neurons. Although isolated to the SNr dendrite, this connection exerts strong control over the entire cell, pausing action potentials and facilitating rebound firing. Furthermore, we find that striosomal input facilitates rebound firing through activation of GABA-B receptors, which strongly hyperpolarize the SNr dendrite. Therefore, inhibition from striosomes onto SNc dopamine neurons is optimally placed to produce rebound firing. In a second project, we set out to directly test for axonal receptors and their influence over axonal excitability and ultimately dopamine release. Specifically, GABA-A receptors modulate transmitter release in some neurons, including potentially dopamine neurons, but the mechanisms of this modulation are debated. To address this knowledge gap, we performed direct recordings from the cut ends of dopaminergic neuron axons, including from branching axons within the dorsal striatum. Our results provide definitive evidence for the existence of GABA-A receptor-mediated conductances. In contrast to their function at the soma, we found axonal GABA-A receptors were depolarizing with a chloride reversal potential of -56 mV relative to resting membrane potential of -68 mV. In addition, we found that activation of GABA-A receptors decreased the amplitude of a propagating action potential through shunting inhibition. Finally, we found that diazepam, a broad-spectrum benzodiazepine, decreased the input resistance of striatal dopamine neuron axons, suggesting an underappreciated mechanism of action for these drugs. In conclusion, direct recordings from dopamine neuron axons demonstrate that GABA-A receptors are important modulators of axonal action potential propagation and dopamine release. In addition, these receptors are targets of benzodiazepines, as well as potentially other drugs that target GABA-A receptors like ethanol and barbiturates. Aside from these two major projects, we have had one study published that identified a sodium leak channel, NALCN, as the main driver of spontaneous firing in SNc dopaminergic neurons (Philippart and Khaliq, eLife 2018). Importantly, we found that both dopamine D2 receptors as well as GABA-B receptor negatively modulate the activity of dopaminergic neurons through inhibition of NALCN. Therefore, this study identifies NALCN as a novel effector Gi/o protein coupled receptors in dopaminergic neurons. Lastly, the personnel in the lab are finding success in their own professional careers. This May, for example, Rebekah Evans was awarded the Brain Initiative K99 grant. She was also asked to deliver talks at the Organization for Computational Neuroscience in Barcelona Spain and at the GRS Catecholamines where she was one of two GRS speakers chosen to deliver a talk at the main GRC meeting. Paul Kramer also presented his work at the GRC Catecholamines meeting with great success. Lastly, Emily Twedell has recently completed her postbaccalaureate fellowship this summer and will enrolling this Fall as a student at UCSF in their Neuroscience Graduate Program. To fill this open position, a new postbaccalaureate fellow, Alexander Sukharev, has joined the lab.
我们的实验室研究位于中脑的多巴胺释放神经元的整合和兴奋性的细胞和亚细胞原则。该实验室的一个主要兴趣是识别功能独特的中脑多巴胺神经元亚群,并了解这些神经元如何对基底神经节回路做出贡献。为此,实验室中的一个项目重点关注了解抑制性输入如何控制黑质致密部(SNc)内的多巴胺能神经元亚群。SNc多巴胺能神经元暂停其活动,以响应在厌恶事件。体内实验表明,这些神经元的一个子集会激发动作电位的反弹爆发,或者在活动令人厌恶的暂停后显示出钙活动的反弹。然而,这种行为背后的局部神经回路目前尚不清楚。我们一直在使用双光子成像和局部光遗传学激活功能映射的抑制性输入从基底神经节核多巴胺神经元。我们比较了纹状体(纹状体和基质)、苍白球(Pvalb和Lhx 6)和黑质网状部(SNr)中五(5)个单独的遗传定义的抑制亚群的强度和位置。我们发现,纹状体输入选择性地抑制腹侧投射的多巴胺神经元的SNr树突。虽然孤立的SNr树突,这种连接施加强大的控制整个细胞,暂停动作电位,促进反弹放电。此外,我们发现纹状体输入通过激活GABA-B受体促进反弹放电,从而使SNr树突强烈超极化。因此,从纹状体到SNc多巴胺神经元的抑制被最佳地放置以产生反弹放电。 在第二个项目中,我们开始直接测试轴突受体及其对轴突兴奋性和最终多巴胺释放的影响。具体而言,GABA-A受体调节某些神经元(包括潜在的多巴胺神经元)中的递质释放,但这种调节的机制存在争议。为了解决这一知识缺口,我们从多巴胺能神经元轴突的切断端进行了直接记录,包括背侧纹状体内的分支轴突。我们的研究结果提供了明确的证据,GABA-A受体介导的电导的存在。与它们在索马的功能相反,我们发现轴突GABA-A受体是去极化的,相对于静息膜电位为-68 mV,氯离子逆转电位为-56 mV。此外,我们发现GABA-A受体的激活通过分流抑制降低了传播动作电位的幅度。最后,我们发现地西泮,一种广谱苯二氮卓类药物,降低了纹状体多巴胺神经元轴突的输入阻力,这表明这些药物的作用机制未被充分认识。总之,多巴胺神经元轴突的直接记录表明,GABA-A受体是轴突动作电位传播和多巴胺释放的重要调节剂。此外,这些受体是苯二氮卓类药物的靶点,也可能是其他靶向GABA-A受体的药物,如乙醇和巴比妥类药物。 除了这两个主要项目外,我们还发表了一项研究,确定了钠泄漏通道NALCN是SNc多巴胺能神经元自发放电的主要驱动因素(Philippart和Khaliq,eLife 2018)。重要的是,我们发现多巴胺D2受体以及GABA-B受体通过抑制NALCN负性调节多巴胺能神经元的活性。因此,本研究确定NALCN作为多巴胺能神经元中的新型效应器Gi/o蛋白偶联受体。 最后,实验室的工作人员在自己的职业生涯中取得了成功。例如,今年5月,丽贝卡·埃文斯获得了大脑倡议K99资助。她还被邀请在西班牙巴塞罗那的计算神经科学组织和GRS Catecholamines发表演讲,她是被选为在主要GRC会议上发表演讲的两名GRS演讲者之一。保罗克雷默还介绍了他的工作在GRC儿茶酚胺会议取得了巨大成功。最后,艾米丽特威德尔最近完成了她的学士后奖学金今年夏天,并将在今年秋天在加州大学旧金山分校的神经科学研究生课程的学生注册。为了填补这一空缺,一位新的学士后研究员亚历山大苏哈列夫加入了实验室。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ZAYD M KHALIQ其他文献

ZAYD M KHALIQ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ZAYD M KHALIQ', 18)}}的其他基金

Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
  • 批准号:
    7001228
  • 财政年份:
    2004
  • 资助金额:
    $ 179.32万
  • 项目类别:
Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
  • 批准号:
    6747153
  • 财政年份:
    2004
  • 资助金额:
    $ 179.32万
  • 项目类别:
Axonal spiking patterns during high-frequency firing
高频放电期间的轴突尖峰模式
  • 批准号:
    6878541
  • 财政年份:
    2004
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    8940124
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    10708621
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    10263046
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Dissecting the inhibitory architecture governing basal ganglia output
剖析控制基底神经节输出的抑制结构
  • 批准号:
    10263060
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    8557101
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    9157570
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:
Synaptic integration and intrinsic firing properties of basal ganglia neurons
基底节神经元的突触整合和内在放电特性
  • 批准号:
    10915986
  • 财政年份:
  • 资助金额:
    $ 179.32万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 179.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了