Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain
多部位自适应脑刺激用于多维治疗难治性慢性疼痛
基本信息
- 批准号:10239201
- 负责人:
- 金额:$ 152.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:Absence of pain sensationAccelerometerAcuteAddressAdultAffectAffectiveAlgorithmsAmygdaloid structureAnalgesicsAnatomyAnteriorAttentionBilateralBiological MarkersBrainBrain regionChronicClinical TrialsCognitiveComputer softwareCross-Over TrialsDataDeep Brain StimulationDetectionDevelopmentDevicesDimensionsDiseaseDouble-Blind MethodElectrodesFailureFeedbackFrequenciesGoalsHealthcareHomeImplantIndividualInpatientsInsula of ReilIntractable PainLocationMeasuresMemoryMethodsModelingMoodsMotivationNervous system structureOperative Surgical ProceduresOpioidOutcomeOutcome MeasurePainPain DisorderPain MeasurementPathologicPatient SelectionPatientsPharmaceutical PreparationsPhysiologicalPhysiologyPositioning AttributePrefrontal CortexProtocols documentationRefractoryReportingResistanceSensorySignal TransductionSiteSubgroupSyndromeTechnologyTestingThalamic structureTherapeuticTherapeutic EffectTimeanimal imagingbasecandidate markerchronic paincomparative efficacyefficacy evaluationexperiencefeasibility testinghuman imagingimaging studyimplantable deviceimplantationimprovedmultimodalityneurophysiologyneurotransmissionnew technologynovelnovel therapeuticspain processingpain reliefpain scorepain signalprogramsrelating to nervous systemresponsesomatosensorysymposium
项目摘要
PROJECT SUMMARY
A diverse array of chronic pain syndromes are refractory to almost all treatment but involve pathological activity
in similar brain regions. This suggests therapeutic potential for deep brain stimulation (DBS) for refractory pain
disorders, but despite early promise, long-term efficacy is lacking. Current DBS devices are limited in anatomical
reach, targeting only a subset of the distinct brain regions known to be important. Further, DBS therapy is bluntly
applied in an “open-loop,” continuous fashion without regard to underlying physiology. As a result of these
shortcomings, DBS for pain is often ineffective or shows diminished effect over time. Loss of therapeutic effect
may be due to nervous system adaptation or a failure of stimulation to accommodate patient- specific dynamics
of pain processing. DBS could be significantly improved by seeking individually optimized brain targets or by
using neural biomarkers of pain to selectively control stimulation when it is needed (“closed-loop” DBS). Better
brain targets would also address the different dimensions of pain such as somatosensory (location, intensity and
duration), affective (mood and motivation) and cognitive (attention and memory). The main goal of this study is
to test the feasibility of personalized targeting of brain regions that support multiple pain dimensions and to
develop new technology for “closed-loop” DBS for pain. We will develop data-driven stimulation control
algorithms to treat chronic pain using a novel device (Medtronic Summit RC+S) that allows longitudinal
intracranial signal recording in an ambulatory setting. By building this technology in an implanted device, we will
tailor chronic pain DBS to each patient and advance precision methods for DBS more generally.
Beginning with an inpatient trial period, subjects with various refractory chronic pain syndromes will
undergo bilateral surgical implant of temporary electrodes in the thalamus, anterior cingulate, prefrontal cortex,
insula and amygdala. These regions have been implicated in the multiple dimensions of pain. The goal of the
trial period is to identify candidate biomarkers of pain and optimal stimulation parameters for each individual, and
to select subjects who show likelihood to benefit from the trial. A subgroup of 6 such patients will then proceed
to chronic implantation of up to 3 “optimal” brain regions for long-term recording and stimulation. We will first
validate biomarkers of low- and high-pain states to define neural signals for pain prediction in individuals (Aim
1). We will then use these pain biomarkers to develop personalized closed-loop algorithms for DBS and test the
feasibility of performing closed-loop DBS for chronic pain in weekly blocks (Aim 2). We will then assess the
efficacy of closed-loop DBS algorithms against traditional open-loop DBS or sham in a double-blinded cross-
over trial (Aim 3) and measure mechanisms of DBS tolerance. Our main outcome measures will be a combination
of pain, mood and functional scores together with quantitative sensory testing. Successful completion of this
study would result in the first algorithms to predict real-time fluctuations in chronic pain states and development
of a new therapy for currently untreatable diseases.
项目摘要
各种各样的慢性疼痛综合征几乎对所有治疗都是难治的,但涉及病理活动
相似的大脑区域。这表明脑深部电刺激(DBS)对顽固性疼痛的治疗潜力
疾病,但尽管早期的承诺,缺乏长期的疗效。目前的DBS器械在解剖学上受到限制,
到达,只针对已知重要的不同大脑区域的子集。此外,DBS疗法直截了当地
以“开环”、连续的方式应用,而不考虑潜在的生理学。由于这些
然而,DBS治疗疼痛通常无效或随着时间的推移效果减弱。治疗效果丧失
可能是由于神经系统适应或刺激失败以适应患者特定的动力学
疼痛处理的过程。DBS可以通过寻求单独优化的大脑靶点或
使用疼痛的神经生物标记物来选择性地控制需要时的刺激(“闭环”DBS)。更好
大脑目标还将解决疼痛的不同维度,如躯体感觉(位置,强度,
持续时间),情感(情绪和动机)和认知(注意力和记忆)。本研究的主要目的是
测试支持多个疼痛维度的大脑区域的个性化靶向的可行性,
开发新的技术,用于治疗疼痛的“闭环”DBS。我们将开发数据驱动的刺激控制
使用一种新型器械(Medtronic Summit RC+S)治疗慢性疼痛的算法
在流动环境中进行颅内信号记录。通过在植入设备中构建这种技术,我们将
为每位患者定制慢性疼痛DBS,并更普遍地推进DBS的精确方法。
从住院试验期开始,患有各种难治性慢性疼痛综合征的受试者将
在丘脑、前扣带回、前额皮质,
杏仁核和杏仁核。这些区域与疼痛的多个维度有关。的目标
试验期旨在确定每个个体的疼痛候选生物标志物和最佳刺激参数,以及
选择有可能从试验中获益的受试者。然后,6名此类患者的亚组将继续进行
到慢性植入多达3个“最佳”大脑区域,以进行长期记录和刺激。我们将首先
验证低和高疼痛状态的生物标志物,以定义用于个体疼痛预测的神经信号(目的
1)。然后,我们将使用这些疼痛生物标志物来开发DBS的个性化闭环算法,并测试
在每周阻滞中进行闭环DBS治疗慢性疼痛的可行性(目标2)。然后我们将评估
在一项双盲交叉试验中,闭环DBS算法相对于传统开环DBS或假手术的有效性
试验(目标3)并测量DBS耐受性的机制。我们的主要成果措施将是
疼痛、情绪和功能评分以及定量感觉测试。成功完成本
这项研究将产生第一个预测慢性疼痛状态和发展的实时波动的算法。
治疗目前无法治愈的疾病的新疗法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prasad Shirvalkar其他文献
Prasad Shirvalkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prasad Shirvalkar', 18)}}的其他基金
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain
多部位自适应脑刺激用于多维治疗难治性慢性疼痛
- 批准号:
10025192 - 财政年份:2019
- 资助金额:
$ 152.88万 - 项目类别:
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain
多部位自适应脑刺激用于多维治疗难治性慢性疼痛
- 批准号:
9932780 - 财政年份:2019
- 资助金额:
$ 152.88万 - 项目类别:
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain
多部位自适应脑刺激用于多维治疗难治性慢性疼痛
- 批准号:
10684293 - 财政年份:2019
- 资助金额:
$ 152.88万 - 项目类别:
Multisite adaptive brain stimulation for multidimensional treatment of refractory chronic pain
多部位自适应脑刺激用于多维治疗难治性慢性疼痛
- 批准号:
10468159 - 财政年份:2019
- 资助金额:
$ 152.88万 - 项目类别:
相似海外基金
Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
- 批准号:
10731315 - 财政年份:2023
- 资助金额:
$ 152.88万 - 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
- 批准号:
10727374 - 财政年份:2023
- 资助金额:
$ 152.88万 - 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
- 批准号:
566730-2021 - 财政年份:2022
- 资助金额:
$ 152.88万 - 项目类别:
Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10444075 - 财政年份:2022
- 资助金额:
$ 152.88万 - 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
- 批准号:
10617774 - 财政年份:2022
- 资助金额:
$ 152.88万 - 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
- 批准号:
22K17623 - 财政年份:2022
- 资助金额:
$ 152.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
- 批准号:
475451 - 财政年份:2022
- 资助金额:
$ 152.88万 - 项目类别:
Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
- 批准号:
466914 - 财政年份:2021
- 资助金额:
$ 152.88万 - 项目类别:
Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
- 批准号:
2120223 - 财政年份:2021
- 资助金额:
$ 152.88万 - 项目类别:
Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
- 批准号:
21K19804 - 财政年份:2021
- 资助金额:
$ 152.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)