Unsupervised optimization of protein therapeutics using closed-loop in vitro synthesis, nanosensing, and deep-learning

使用闭环体外合成、纳米传感和深度学习对蛋白质疗法进行无监督优化

基本信息

  • 批准号:
    10252011
  • 负责人:
  • 金额:
    $ 36.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-05 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Project Summary Overview of research: The Reuel Group at Iowa State University (founded Fall 2016) seeks to develop new materials, methods, and measurement devices for biomanufacturing, biotherapeutics, and biosensors. We have active work-streams in 1) optical nanosensors for protein binding, enzymatic activity, and cell membrane disruption, 2) scalable and reliable cell free protein synthesis (CFPS) methods for protein prototyping (extract and genetic template improvements), 3) microfluidics for droplet generation and measurement of CFPS products, interrogated by nanosensors, 4) algorithms for `big data' generated from nanosensors (machine learning and deep learning methods), 5) engineered endospores for time-delayed synthetic biology circuits, and 6) resonant radio frequency sensors for biomanufacturing, wound healing, and water quality. The overall vision of the research program is to simplify and improve the design and manufacturing of biological products (cells and proteins) for applications in therapies, advanced materials, and bio-electronics. Protein based therapies have demonstrated in clinic to be a potent tool in the treatment of many diseases. In recent years, the design, build, and test cycle to find therapies for new disease targets has improved dramatically using techniques such as surface display coupled to evolutionary selection. However, these mutagenic approaches have a few limitations, namely: 1) they require a suitable, naturally occurring sequence as a starting point, 2) they frequently optimize solely on a single desired feature, and 3) they operate as a `black box', meaning that generalizable design rules for in silico prediction of future products is not possible. It is the purpose of this MIRA for ESI research plan to design a closed-loop system that allows for unsupervised design and discovery of protein therapeutics that overcomes these limitations. Over the next five years we will build and integrate the system components which include enzymatic DNA synthesis coupled to cell free protein synthesis to rapidly prototype libraries of custom proteins in micro-droplet reactors. These proteins will then be characterized in the micro-droplets using optical nanosensors, to test for desired features such as stability, binding affinity, selectivity, hydrolytic activity, and/or membrane penetration. This will produce a large labeled data set (tying sequence to phenotypic properties) that can be used to train a deep learning neural network to self-determine sequence patterns for specific properties. Once the tuning coefficients of the network are found, the algorithm will then predict next best sequences which will be synthesized, tested, etc. such that the design loop progresses unsupervised until optimization criteria are met. This new approach will result in faster development of protein therapies that are optimized based on multiple criteria and not tied to existing, natural sequences. For patients this translates to more efficacious therapies with less side effects and a potential for reduced cost (due to shortened design timeline). At the end of the five-year project we will seek to translate this technology, via NIH SBIR funding, such that the new technology can make an impact on actual therapies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel F Reuel其他文献

Nigel F Reuel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel F Reuel', 18)}}的其他基金

Unsupervised optimization of protein therapeutics using closed-loop in vitro synthesis, nanosensing, and deep-learning
使用闭环体外合成、纳米传感和深度学习对蛋白质疗法进行无监督优化
  • 批准号:
    10449253
  • 财政年份:
    2020
  • 资助金额:
    $ 36.4万
  • 项目类别:
Unsupervised optimization of protein therapeutics using closed-loop in vitro synthesis, nanosensing, and deep-learning
使用闭环体外合成、纳米传感和深度学习对蛋白质疗法进行无监督优化
  • 批准号:
    10028304
  • 财政年份:
    2020
  • 资助金额:
    $ 36.4万
  • 项目类别:
Unsupervised optimization of protein therapeutics using closed-loop in vitro synthesis, nanosensing, and deep-learning
使用闭环体外合成、纳米传感和深度学习对蛋白质疗法进行无监督优化
  • 批准号:
    10698126
  • 财政年份:
    2020
  • 资助金额:
    $ 36.4万
  • 项目类别:
Unsupervised optimization of protein therapeutics using closed-loop in vitro synthesis, nanosensing, and deep-learning
使用闭环体外合成、纳米传感和深度学习对蛋白质疗法进行无监督优化
  • 批准号:
    10840698
  • 财政年份:
    2020
  • 资助金额:
    $ 36.4万
  • 项目类别:

相似海外基金

Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
  • 批准号:
    RGPIN-2020-06792
  • 财政年份:
    2022
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
  • 批准号:
    RGPIN-2020-04075
  • 财政年份:
    2022
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
  • 批准号:
    RGPIN-2022-02948
  • 财政年份:
    2022
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
  • 批准号:
    RGPIN-2017-05617
  • 财政年份:
    2022
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
  • 批准号:
    2203524
  • 财政年份:
    2021
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
  • 批准号:
    RGPIN-2020-06792
  • 财政年份:
    2021
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
  • 批准号:
    21K12034
  • 财政年份:
    2021
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
  • 批准号:
    571110-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
  • 批准号:
    RGPIN-2017-05617
  • 财政年份:
    2021
  • 资助金额:
    $ 36.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了