The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
基本信息
- 批准号:10090265
- 负责人:
- 金额:$ 71.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaBioinformaticsBiologicalBiological AssayCatalogsCellsClinicalCollaborationsCommunitiesComplexComputer softwareDataData AggregationData CommonsData SetDatabasesDiseaseElementsFundingGenesGeneticGenomicsGoalsGraphHealthHumanKnowledgeKnowledge PortalManualsMapsMethodsMolecularNational Human Genome Research InstituteNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusOutputPathway interactionsPhenotypeResearchResearch DesignResearch PersonnelResourcesSourceTissuesTranslatingTrustVariantVisualWorkcausal variantdata accessdata resourcedata sharingdesigndisorder riskepigenomicsfunctional genomicsgenetic associationgenetic variantgenome wide association studygenomic datahuman diseaseimprovedinnovationinsightknowledge graphnew therapeutic targetprecision medicinestatisticstraittranscriptomicsweb based interfaceweb portal
项目摘要
Abstract
Genome wide association studies (GWAS) have produced associations between many thousands of
genetic variants and many hundreds of traits. The “functional effects” of most associations, however, have not
yet been elucidated – that is, the causal variants and effector genes responsible for them, and the tissues and
pathways through which they act, remain largely unknown. Over the past few years, three classes of genomic
data have arisen for inferring the functional effects of GWAS associations: summary association statistics
(effect sizes and p-values for associations between SNPs and traits), genomic annotations (assays of
regulatory activity and genomic functional elements), and bioinformatic methods (computationally predicted
functional effects). We argue that two gaps exist in the current resources that aggregate these data: first, no
current resource aims to comprehensively curate and catalog all that is known, and all data or methods that
could help predict, the functional effects of GWAS associations; second, existing resources are developed with
(at best) limited involvement from experts who either originally generated the genomic data and/or understand
how to best use them. We propose to address these gaps by building a new genomic community resource –
the Association to Function Knowledge Portal (A2FKP) – using a general software platform we initially
developed for type 2 diabetes. Our approach makes use of a key innovation to build a resource that is both
high quality and comprehensive: we collaborate with disease expert communities to build dedicated knowledge
portals for them, motivating them to contribute their data and expertise, and we then integrate these data
alongside those of other communities, providing users with access a comprehensive resource.
Specific aim 1 addresses gaps in the comprehensiveness and quality of the data aggregated by
current resources regarding the functional effects of GWAS associations. It will establish and manage
collaborations with a wide range of disease, data, and method experts, and then work with these communities
to identify, aggregate, and curate data for 11 classes of disease. Specific aim 2 addresses gaps in current
schemas and software platforms for the myriad types of data used for predicting the functional effects of
GWAS associations. It will build pipelines for processing genetic and genomic datasets through bioinformatic
methods for predicting the functional effects of GWAS associations, apply these pipelines to data aggregated
in Aim 1, and transform their outputs to relationships among entities in a knowledge graph. The goal of
specific aim 3 is to provide users with direct and visual access to the resources aggregated or computed in
Aims 1 and 2. It will develop REST APIs and web portals for querying and visualizing data within the A2FKP.
Significance: The project would produce a high quality and comprehensive genomic resource of data
and methods for predicting the functional effects of GWAS associations. Easy access to such a resource will
accelerate the pace by which GWAS associations can be translated to insights into complex disease.
摘要
全基因组关联研究(GWAS)已经在数千个基因组之间产生了关联。
遗传变异和数百种特征。然而,大多数协会的“功能效应”并没有
尚未阐明-也就是说,因果变异和效应基因负责他们,和组织,
它们的作用途径在很大程度上仍然未知。在过去的几年里,三类基因组
已经出现了用于推断GWAS关联的功能效应的数据:关联统计汇总
(SNP和性状之间关联的效应大小和p值),基因组注释(
调节活性和基因组功能元件)和生物信息学方法(计算预测
功能效果)。我们认为,在目前的资源,汇总这些数据存在两个差距:第一,没有
目前的资源旨在全面地整理和编目所有已知的,以及所有数据或方法,
可以帮助预测,GWAS协会的功能效果;第二,现有资源的开发,
(at最好)最初生成基因组数据和/或了解基因组数据的专家的参与有限
如何最好地使用它们。我们建议通过建立一个新的基因组社区资源来解决这些差距-
功能关联知识门户(A2 FKP)-使用通用软件平台,
2型糖尿病的治疗方法我们的方法利用了一个关键的创新来构建一个既能
高质量和全面:我们与疾病专家社区合作,建立专门的知识
门户网站,激励他们贡献自己的数据和专业知识,然后我们整合这些数据
与其他社区的社区一起,为用户提供全面的资源。
具体目标1解决以下方面所汇总数据的全面性和质量方面的差距:
关于GWAS关联的功能影响的当前资源。它将建立和管理
与广泛的疾病,数据和方法专家合作,然后与这些社区合作
识别、汇总和管理11类疾病的数据。具体目标2解决目前
模式和软件平台的无数类型的数据用于预测功能的影响,
GWAS协会。它将通过生物信息学建立处理遗传和基因组数据集的管道
预测GWAS关联的功能效应的方法,将这些管道应用于聚合的数据
在目标1中,并将其输出转换为知识图中实体之间的关系。的目标
具体目标3是向用户提供对在
目标1和2。它将开发REST API和门户网站,用于查询和可视化A2 FKP中的数据。
意义:该项目将产生高质量和全面的基因组数据资源
以及预测GWAS关联的功能效应的方法。容易获得这样的资源将
加快GWAS关联转化为对复杂疾病的洞察的步伐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noel P Burtt其他文献
Noel P Burtt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noel P Burtt', 18)}}的其他基金
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
$ 71.07万 - 项目类别:
The Association to Function Knowledge Portal: a genomic data resource for translating GWAS associations to biological effects
功能关联知识门户:用于将 GWAS 关联转化为生物效应的基因组数据资源
- 批准号:
10673866 - 财政年份:2021
- 资助金额:
$ 71.07万 - 项目类别:
The next iteration of the AMP-T2D Knowledge Portal
AMP-T2D 知识门户的下一个迭代
- 批准号:
10839598 - 财政年份:2015
- 资助金额:
$ 71.07万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 71.07万 - 项目类别:
Standard Grant