Understanding the sequence and structural determinants of phase behavior of ALS-causing proteins
了解 ALS 致病蛋白相行为的序列和结构决定因素
基本信息
- 批准号:10558635
- 负责人:
- 金额:$ 62.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdhesivesAffinityAgingAmyotrophic Lateral SclerosisAromatic Amino AcidsAutomobile DrivingBehaviorBiochemicalBiophysicsBrainCytoplasmDegenerative DisorderDevelopmentDiseaseDisease ProgressionElementsGeneticGoalsHeterogeneous-Nuclear RibonucleoproteinsHydrogen BondingInvestigationLifeLinkLiquid substanceLocalesLocationMediatingMembraneMicroscopicModelingMolecularMutationNatureNeurodegenerative DisordersNodalOrganellesPathogenesisPathologicPatternPhasePhase TransitionPhysical condensationPhysicsPolyribosomesPositioning AttributeProcessProteinsRNARNA Recognition MotifRNA-Binding ProteinsRoleSideSolidSolventsSpinal CordStressStructureSystemTAF15 geneTemperatureTestingTherapeuticTherapeutic InterventionTranslationsVertebral columnWorkarmcrosslinkdesigndisease-causing mutationdriving forceeffective therapyexperimental studyinsightinterestmacromoleculemembermotor neuron degenerationmutantpredictive modelingprotein TDP-43protein aggregationscaffoldsimulationsolid statestress granulestructural determinantstheories
项目摘要
Summary
Amyotrophic lateral sclerosis (ALS) is a life-threatening, neurodegenerative disease that causes the
degeneration of motor neurons in the brain and spinal cord. There are currently neither a cure nor effective
treatments to slow progression. However, recent new genetic, biochemical and biophysical evidence implicates
stress granules as crucibles for disease development. Stress granules are membraneless organelles, also called
biomolecular condensates, which form via liquid-liquid phase separation (LLPS) of RNA-binding proteins and
RNA. Mutations in RNA-binding proteins convert liquid-like stress granules into solid inclusions. Prolonged stress
granule assembly can result in similar effects. These observations point to new opportunities for therapeutic
interventions if key open questions regarding the nature of liquid vs. solid assemblies can be answered. We will
thus test the overarching hypothesis, which is based on above observations, that mutations in RNA-binding
proteins change the driving forces for phase separation, the dynamical arrest of the liquid condensates and the
ability of the condensates to promote the formation of protein fibrils. Our proposed studies will thus focus on the
physics of phase separation of RNA-binding proteins, specifically on their intrinsically disordered low-complexity
domains (LCDs) that are sufficient for mediating phase separation and are the typical locations of disease
mutations. We will use the LCD of hnRNPA1 as an archetypal member of the class of ALS-associated RNA-
binding proteins and will extend our studies also to the LCD of FUS. Mittag and Pappu have recently developed
a stickers-and-spacers model that is based on the identification of transient, cohesive interactions amongst
aromatic amino acid residues as providing the main driving force for phase separation. The aromatic residues
are the stickers in this model, the spacers are the residues that connect the stickers. The model enables the
quantitative prediction of full coexistence curves as a function of temperature and, importantly, resulted in a
conceptual advancement of our understanding of how phase separation is encoded in LCDs. The complimentary
expertise of Mittag and Pappu will now bring to bear a combination of biophysical experiments, computation and
theory on the following three specific aims: (1) To extend the stickers-and-spacers model by quantifying the
interplay among different types of stickers and spacers. (2) To test the hypothesis that disease causing mutations
within LCDs of ALS-causing RNA-binding proteins cause dynamically arrested phase transitions. (3) To uncover
the interplay among sidechain and backbone interactions and their contributions to spatial organization of LCDs
within dense phases. Our results will enable quantitative predictions of the effects of ALS-associated mutants
on phase behavior. We will obtain a clear understanding of how sequence-specific phase diagrams contribute
to the dynamics of phase separation and aging phenomena. We will identify the types of interactions underlying
liquid-like and solid-like dense phases. These results will have a direct bearing on therapeutic interventions
against the functional disruptions that are likely to be caused by dynamically arrested phase separation.
摘要
肌萎缩侧索硬化症(ALS)是一种危及生命的神经退行性疾病,可导致
大脑和脊髓中运动神经元的变性。目前既没有治愈的方法,也没有有效的方法
延缓病情发展的治疗方法。然而,最近新的遗传、生化和生物物理证据表明
应激颗粒是疾病发展的熔炉。应激颗粒是无膜细胞器,也称为
生物分子凝聚体,通过RNA结合蛋白和蛋白质的液液相分离(LLP)形成
核糖核酸。RNA结合蛋白的突变将液体状应激颗粒转化为固体包裹体。长期应激
颗粒组装也会产生类似的效果。这些观察指出了治疗的新机会
如果关于液体组件与固体组件的性质的关键开放问题可以得到回答,则可以进行干预。我们会
从而检验基于上述观察结果的压倒一切的假设,即RNA结合中的突变
蛋白质改变了相分离的驱动力,液体冷凝物的动态停止,以及
凝结物促进蛋白质原纤维形成的能力。因此,我们建议的研究将集中于
RNA结合蛋白的相分离物理学,特别是关于其内在无序的低复杂性
足以调节相分离的区域(LCD),是疾病的典型位置
突变。我们将使用hnRNPA1的LCD作为ALS相关RNA类的原型成员-
并将我们的研究扩展到FUS的LCD。Mittag和Pappu最近开发了
一种贴纸和间隔物模型,该模型基于识别相互之间的瞬时、内聚相互作用
芳香族氨基酸残基是相分离的主要驱动力。芳香残留物
在这个模型中是贴纸,间隔是连接贴纸的残基。该模型使
作为温度函数的完全共存曲线的定量预测,并且重要的是,导致了
我们对相分离是如何在LCD中编码的理解的概念性进展。免费赠品
Mittag和Pappu的专业知识现在将结合生物物理实验、计算和
关于以下三个具体目标的理论:(1)通过量化
不同类型的贴纸和垫片之间的相互作用。(2)检验疾病导致突变的假设
在肌萎缩侧索硬化症的液晶显示器内,引起肌萎缩侧索硬化症的RNA结合蛋白引起动态停止的相变。(三)揭开
侧链和骨架相互作用及其对液晶显示器空间组织的贡献
在稠密的相中。我们的结果将使对ALS相关突变的影响进行定量预测成为可能
关于相态行为。我们将清楚地了解特定于序列的相图如何起作用
相分离和老化现象的动力学。我们将确定潜在的交互类型
类液体和类固体致密相。这些结果将直接影响到治疗干预。
以防止可能由动态停止的相分离引起的功能中断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanja Mittag其他文献
Tanja Mittag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanja Mittag', 18)}}的其他基金
Understanding the sequence and structural determinants of phase behavior of ALS-causing proteins
了解 ALS 致病蛋白相行为的序列和结构决定因素
- 批准号:
10182841 - 财政年份:2021
- 资助金额:
$ 62.4万 - 项目类别:
The role of weak multivalent interactions and phase separation in SPOP tumor suppressor function
弱多价相互作用和相分离在SPOP肿瘤抑制功能中的作用
- 批准号:
10543538 - 财政年份:2015
- 资助金额:
$ 62.4万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
8986797 - 财政年份:2015
- 资助金额:
$ 62.4万 - 项目类别:
The role of weak multivalent interactions and phase separation in SPOP tumor suppressor function
弱多价相互作用和相分离在SPOP肿瘤抑制功能中的作用
- 批准号:
10316227 - 财政年份:2015
- 资助金额:
$ 62.4万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
8800305 - 财政年份:2015
- 资助金额:
$ 62.4万 - 项目类别:
Multivalent higher-order complexes regulate ubiquitination in Hedgehog signaling
多价高阶复合物调节 Hedgehog 信号传导中的泛素化
- 批准号:
9187013 - 财政年份:2015
- 资助金额:
$ 62.4万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 62.4万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 62.4万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 62.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 62.4万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 62.4万 - 项目类别:
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 62.4万 - 项目类别:
Collaborative R&D
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 62.4万 - 项目类别:
Continuing Grant
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 62.4万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 62.4万 - 项目类别:
Mechanisms of Blood Clot Adhesion and the Design of New Wet Adhesives
血凝块粘附机制及新型湿粘合剂的设计
- 批准号:
RGPIN-2018-04918 - 财政年份:2022
- 资助金额:
$ 62.4万 - 项目类别:
Discovery Grants Program - Individual