Beyond theta: analyzing oscillations across the frequency spectrum in patients with dystonia implanted with sensing-enabled pulse generators

超越 theta:分析植入传感脉冲发生器的肌张力障碍患者的整个频谱振荡

基本信息

项目摘要

Project Summary/Abstract Dystonia is a disabling neurological condition characterized by sustained or repetitive muscle movements causing abnormal movements or postures. Studies that have investigated local field potentials (LFPs) recorded from deep brain stimulation (DBS) – direct electrical stimulation of subcortical brain structures using chronically implanted electrodes – leads in dystonia patients have been in-clinic or perioperative recordings while the patient was performing constrained movements. These studies have characterized pathologically increased low- frequency activity [i.e., theta (3-8 Hz)] and its relationship to dystonic symptoms. However, the functional relevance of this activity remains elusive and recent findings have implicated that additional oscillations (e.g., finely-tuned or narrowband gamma) may be related to pathophysiology. The objective of this application is to identify individualized LFP biomarkers of dystonia in a data-driven manner across the basal ganglia and cortex, while revealing the relationship between fluctuations in biomarkers to symptom suppression during DBS. We will accomplish this using a second-generation investigational, bidirectional device (Medtronic RC+S), which allows us to chronically sense LFPs and deliver DBS therapy while patients are in at-home settings. These novel recordings and devices provide insights into complex biomarkers and naturalistic behaviors, allowing a direct comparison of individualized biomarkers to symptom monitoring or suppression. This will advance our understanding of neural changes associated with dystonia and DBS, ultimately improving current neurostimulation therapy. Our central hypothesis is that naturalistic neural recordings, specifically those recorded both cortically and subcortically in conjunction with multimodal signal acquisition (i.e., video kinematics and acceleration), can detect personalized biomarkers of dystonic symptoms that can illuminate our network understanding of the disease and its symptom manifestation, while aiding in the optimization of DBS therapy. In Aim 1, we will identify and characterize individualized power bands associated with pathological activity in patients with dystonia using chronic subcortical and cortical recordings. We will decode pathological states using supervised and self-supervised machine learning techniques. In Aim 2, we will determine personalized power bands modulated during deep brain stimulation in patients with dystonia using chronic subcortical and cortical recordings and utilize these relationships to optimize stimulation programming. This research is significant and innovative because it will be the first chronic, multisite LFP recording paradigm to study effects of dystonic symptoms and DBS on pallidal LFPs, cortical LFPs, and subcortical-cortical interactions using the Medtronic RC+S, providing ample information about basal ganglia and cortical functions, network interactions in dystonia and the mechanisms of DBS. Lastly, our goal is to expand this paradigm into commercialized, sensing-enabled DBS devices – the preliminary steps towards personalized neuromodulation.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Lynn Cernera其他文献

Stephanie Lynn Cernera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Lynn Cernera', 18)}}的其他基金

Wearable-Sensor Driven Responsive Deep Brain Stimulation for the Improved Treatment of Essential Tremor
可穿戴传感器驱动的响应性深部脑刺激可改善特发性震颤的治疗
  • 批准号:
    10160652
  • 财政年份:
    2020
  • 资助金额:
    $ 6.91万
  • 项目类别:

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship Programs
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了