Charting the differentiation topology of SF3B1 mutated clonal hematopoiesis (CH) and myelodysplastic syndromes (MDS) via a multi-omics single-cell toolkit
通过多组学单细胞工具包绘制 SF3B1 突变克隆造血 (CH) 和骨髓增生异常综合征 (MDS) 的分化拓扑图
基本信息
- 批准号:10570240
- 负责人:
- 金额:$ 68.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmixtureAdoptedAffectAutomobile DrivingBar CodesBlood CellsBlood typing procedureBone MarrowCell physiologyCell surfaceCellsCellular Indexing of Transcriptomes and Epitopes by SequencingCharacteristicsChromatinClonal ExpansionComplementary DNADNADataDevelopmentDiseaseDysmyelopoietic SyndromesEpigenetic ProcessErythroidFrequenciesGene ExpressionGeneticGenetic TranscriptionGenomicsGenotypeGrowthHematological DiseaseHematologyHematopoiesisHematopoieticHematopoietic NeoplasmsHematopoietic stem cellsHumanIndividualKnowledgeLeadLearningLengthLesionLinkMapsMediatingMethodsMinorityMutateMutationNaturePatientsPatternPhenotypePlayPopulationProtein IsoformsProteinsRNARNA SplicingRNA analysisRNA-Binding ProteinsRecurrenceResolutionRiskRoleSamplingSignal TransductionSomatic MutationSpliceosomesSystemTechniquesTechnologyTestingTreesValidationVariantbone cellcell typechromatin modificationcohortdriver mutationhematopoietic differentiationinsightinterestmethylomemouse modelmultiple omicsmutantmutational statusprogenitorprogramsprotein expressionself-renewalsingle cell technologysingle-cell RNA sequencingtranscriptome
项目摘要
SUMMARY
Genomic analyses of thousands of MDS patients has established that mutations in RNA splicing factors are
the most common class of genetic alterations in patients with MDS. In parallel, functional studies have
revealed that several of these genetic lesions appear to drive aberrant hematopoietic self-renewal and
differentiation that is characteristic of MDS. Specifically, mutations in splicing factor 3b subunit 1(SF3B1), a
core spliceosome component, are among the most common in patients with MDS and lead to incorrect intronic
branch point recognition. Despite these advances, our knowledge of the effects of this genetic alteration on
downstream gene expression programs within actual disease initiating cells has been hampered by the
coexistence of normal wildtype hematopoiesis together with the aberrant clone harboring somatic driver
mutations. While some of these limitations are now beginning to be addressed with single cell genomics,
performing a layered genomic analysis to simultaneously capture somatic mutations, gene expression, RNA
splicing, and chromatin state in single cells has never been performed. Expression of RNA-binding proteins is
in turn cell type dependent, necessitating the simultaneously profiling of gene expression, full-length cDNA and
SF3B1 mutational status at the single cell level, allowing splicing to be examined in the proper cellular context.
To address this challenge, we developed an array of multi-omic single-cell technologies that are capable of
capturing multiple layers of information (e.g., genotypes, transcriptomes, methylomes, protein expression) from
the same single cells. Moreover, we addressed the specific challenge of genotyping in scRNA-seq in single
cells at high throughput by developing Genotyping of Transcriptomes (GoT). Importantly, GoT turns the
admixture of mutant and wildtype hematopoiesis from a limitation to an advantage, enabling the direct
comparison of mutant and wildtype cells within the same individual.
Capitalizing on a unique cohort of bone marrow samples from individuals with MDS and CH, we now aim to
apply and extend the multi-omics single-cell toolkit to test define how SF3B1 somatic mutations lead to clonal
growth advantage. First, we will perform GoT across MDS and CH samples with canonical SF3B1 driver
mutations. We will integrate GoT with Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-
seq) (GoT-CITE), to add the critical layer of cell surface markers to single-cell whole transcriptomes. Second,
mutations in splicing factors are specifically associated with greater risk of transformation in CH. Therefore, we
will develop and implement GoT-Splice, where long-read sequencing will be used to define splicing variation
as a function of cell identity. Third, given the high importance of epigenetic patterning to hematopoietic stem
cell identity, we will develop and apply targeted single-cell genotyping in the context of chromatin accessibility
(GoT-ChA). This will allow us to unravel the regulatory underpinnings of SF3B1-driven CH and MDS.
总结
对数千例MDS患者的基因组分析已经证实,RNA剪接因子的突变是导致MDS的主要原因。
MDS患者中最常见的一类遗传改变。与此同时,功能研究
揭示了这些遗传病变中的一些似乎驱动异常的造血自我更新,
分化是MDS的特征。具体地说,剪接因子3b亚基1(SF 3B 1),a
核心剪接体成分,是MDS患者中最常见的,并导致不正确的内含子
分支点识别。尽管取得了这些进展,我们对这种基因改变对人的影响的认识仍然是有限的。
在实际的疾病起始细胞中的下游基因表达程序已经受到了
正常野生型造血与携带体细胞驱动因子的异常克隆共存
突变。虽然这些限制中的一些现在开始用单细胞基因组学来解决,
进行分层基因组分析,以同时捕获体细胞突变、基因表达、RNA
剪接和染色质状态在单细胞中从未进行过。RNA结合蛋白的表达是
反过来,细胞类型依赖性,需要同时分析基因表达,全长cDNA和
在单细胞水平上的SF 3B 1突变状态,允许在适当的细胞环境中检查剪接。
为了应对这一挑战,我们开发了一系列多组学单细胞技术,
捕获多层信息(例如,基因型、转录组、甲基化组、蛋白质表达),
相同的单细胞。此外,我们解决了scRNA-seq中基因分型的特定挑战,
通过开发转录组基因分型(GoT)以高通量培养细胞。重要的是,GoT将
突变体和野生型造血的混合物从限制变为优势,使得直接
同一个体内突变型和野生型细胞的比较。
利用来自MDS和CH个体的独特骨髓样本队列,我们现在的目标是
应用并扩展多组学单细胞工具包,以测试定义SF 3B 1体细胞突变如何导致克隆
增长优势。首先,我们将使用标准SF 3B 1驱动程序在MDS和CH样本上执行GoT
突变。我们将通过测序将GoT与转录组和表位的细胞索引(Cellular Indexing of Transcriptomes and Epitopes)整合(CITE-2010)。
seq)(GoT-CITE),以将细胞表面标志物的关键层添加到单细胞全转录组。第二、
剪接因子的突变与CH转化的更大风险特别相关。
将开发和实施GoT-Splice,其中长读序测序将用于定义剪接变异
as a function函数of cell细胞identity标识.第三,鉴于表观遗传模式对造血干细胞的高度重要性,
细胞的身份,我们将开发和应用有针对性的单细胞基因分型的背景下,染色质的可及性
(GoT-ChA)。这将使我们能够解开SF 3B 1驱动的CH和MDS的监管基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Abdel-Wahab其他文献
Omar Abdel-Wahab的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Abdel-Wahab', 18)}}的其他基金
Synthetic introns for selective targeting of RNA splicing factor-mutant leukemia
用于选择性靶向RNA剪接因子突变型白血病的合成内含子
- 批准号:
10722782 - 财政年份:2023
- 资助金额:
$ 68.07万 - 项目类别:
Charting the differentiation topology of SF3B1 mutated clonal hematopoiesis (CH) and myelodysplastic syndromes (MDS) via a multi-omics single-cell toolkit
通过多组学单细胞工具包绘制 SF3B1 突变克隆造血 (CH) 和骨髓增生异常综合征 (MDS) 的分化拓扑图
- 批准号:
10366517 - 财政年份:2022
- 资助金额:
$ 68.07万 - 项目类别:
Project 3: Therapeutic inhibition of splicing through inhibition of protein arginine methylation in leukemia
项目3:通过抑制白血病中蛋白质精氨酸甲基化来治疗性抑制剪接
- 批准号:
10474285 - 财政年份:2021
- 资助金额:
$ 68.07万 - 项目类别:
The Memorial Sloan Kettering Cancer Center SPORE in Leukemia
纪念斯隆凯特琳癌症中心 SPORE 白血病
- 批准号:
10474261 - 财政年份:2021
- 资助金额:
$ 68.07万 - 项目类别:
Targeting an RNA Binding Protein Network in Acute Myeloid Leukemia
靶向急性髓系白血病中的 RNA 结合蛋白网络
- 批准号:
10171812 - 财政年份:2020
- 资助金额:
$ 68.07万 - 项目类别:
Interrogating the minor spliceosome to understand and treat leukemia
研究小剪接体以了解和治疗白血病
- 批准号:
10210368 - 财政年份:2020
- 资助金额:
$ 68.07万 - 项目类别:
Interrogating the minor spliceosome to understand and treat leukemia
研究小剪接体以了解和治疗白血病
- 批准号:
10434705 - 财政年份:2020
- 资助金额:
$ 68.07万 - 项目类别:
Interrogating the minor spliceosome to understand and treat leukemia
研究小剪接体以了解和治疗白血病
- 批准号:
10669013 - 财政年份:2020
- 资助金额:
$ 68.07万 - 项目类别:
相似海外基金
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10818088 - 财政年份:2023
- 资助金额:
$ 68.07万 - 项目类别:
Admixture Mapping of Coronary Heart Disease and Associated Metabolomic Markers in African Americans
非裔美国人冠心病和相关代谢组标记物的混合图谱
- 批准号:
10571022 - 财政年份:2023
- 资助金额:
$ 68.07万 - 项目类别:
Whole Genome Sequencing and Admixture Analyses of Neuropathologic Traits in Diverse Cohorts in USA and Brazil
美国和巴西不同群体神经病理特征的全基因组测序和混合分析
- 批准号:
10590405 - 财政年份:2023
- 资助金额:
$ 68.07万 - 项目类别:
NSF Postdoctoral Fellowship in Biology: Coalescent Modeling of Sex Chromosome Evolution with Gene Flow and Analysis of Sexed-versus-Gendered Effects in Human Admixture
NSF 生物学博士后奖学金:性染色体进化与基因流的合并模型以及人类混合中性别与性别效应的分析
- 批准号:
2305910 - 财政年份:2023
- 资助金额:
$ 68.07万 - 项目类别:
Fellowship Award
Admixture mapping of mosaic copy number alterations for identification of cancer drivers
用于识别癌症驱动因素的马赛克拷贝数改变的混合图谱
- 批准号:
10608931 - 财政年份:2022
- 资助金额:
$ 68.07万 - 项目类别:
Leveraging the Microbiome, Local Admixture, and Machine Learning to Optimize Anticoagulant Pharmacogenomics in Medically Underserved Patients
利用微生物组、局部混合物和机器学习来优化医疗服务不足的患者的抗凝药物基因组学
- 批准号:
10656719 - 财政年份:2022
- 资助金额:
$ 68.07万 - 项目类别:
Genealogical ancestors, admixture, and population history
家谱祖先、混合和人口历史
- 批准号:
2116322 - 财政年份:2021
- 资助金额:
$ 68.07万 - 项目类别:
Standard Grant
Genetic & Social Determinants of Health: Center for Admixture Science and Technology
遗传
- 批准号:
10307040 - 财政年份:2021
- 资助金额:
$ 68.07万 - 项目类别:
Admixture analysis of acute lymphoblastic leukemia in African American children: the ADMIRAL Study
非裔美国儿童急性淋巴细胞白血病的混合分析:ADMIRAL 研究
- 批准号:
10307680 - 财政年份:2021
- 资助金额:
$ 68.07万 - 项目类别: