Neural Substrate of Outcomes after Neonatal Hypoxic Ischemic Encephalopathy

新生儿缺氧缺血性脑病后结局的神经基质

基本信息

  • 批准号:
    10577865
  • 负责人:
  • 金额:
    $ 22.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Abstract Neonatal brain injury caused by hypoxic ischemic encephalopathy (HIE) affects 1-5/1000 term-born infants. HIE often causes adverse outcomes, defined as death or cognitive Bayley Scales of Infant Development (cBSID)<85 by 2 years. Current therapeutic trials are testing whether late, deeper, and/or longer versions of the standard therapeutic hypothermia could further reduce the adverse 2-year outcome. However, therapeutic innovation is slow and inconclusive, because the exact neuroanatomic substrate (i.e., the anatomy that underlies outcomes) is unknown and there is a lack of a reliable tool to predict 2-year adverse outcomes after HIE. Understanding the neural substrate and hence prediction of the adverse 2-year outcome can: (a) before therapy in the neonatal stage, identify those patients at high risk to develop adverse 2-year outcomes, so our therapeutic trials can focus on those high-risk patients and avoid unnecessary therapies to low-risk patients; and (b) right after therapy, to evaluate therapeutic effects early (in the neonatal stage), avoiding the wait until 2 years to observe the outcome and therefore expediting therapeutic innovations. Brain magnetic resonance imaging (MRI) is being explored by NIH Neonatal Research Network (NRN) as a potential biomarker to quantify neural substrate and predict the 2- year adverse outcome. However, expert interpretation and scoring systems, the current norm, only consider a selected set of brain regions (e.g., thalamus, basal ganglia, internal capsules, and others usually along the corticospinal tract), and only consider MRI metrics, not optimally combining MRI with clinical variables. The recent rise of novel lesion-symptom mapping (LSM) technologies allows us to conduct the first study to quantify voxel-, region-, and fiber-wise neural substrate throughout the brain, in a much more comprehensive and multivariate manner than the NRN scoring systems. Our preliminary results using the first-generation of LSM (voxel-wise LSM, or V-LSM) have led to novel findings of new regions and left hemisphere dominance in the neural substrate that were previously not considered in the NRN scoring system. In this R21, our Aim 1 will further use the second-generation LSM (i.e., multivariate LSM, or M-LSM) and the third-generation LSM (i.e., connectome LSM, or C-LSM) to more comprehensively explore neural substrate underlying 2-year adverse HIE outcome. Our Aim 2 will propose a novel machine learning and deep learning algorithm, termed predictive LSM or P-LSM, to compare and combine the findings from three generations of LSM, and apply this novel algorithm to predict individual outcomes in HIE patients, without and with adding clinical variables (Aims 2a and 2b, respectively). Our overall hypothesis is that quantitative and thorough characterization of the neural substrate in our to-be-developed machine learning and deep learning framework can predict 2-year adverse HIE outcomes more accurately than the current NRN scores.
摘要 新生儿缺氧缺血性脑病(HIE)造成的脑损伤影响1-5/1000足月出生的婴儿。HIE 通常会导致不良后果,定义为死亡或认知贝利婴儿发育量表(cBSID)<85 2年。当前的治疗试验正在测试该标准的后期、更深和/或更长版本是否 治疗性低温可进一步减少2年不良结局。然而,治疗创新是 缓慢且不确定,因为确切的神经解剖学基底(即,结果背后的解剖结构) 目前尚不清楚,缺乏可靠的工具来预测HIE后2年的不良结局。了解 神经基质,从而预测不良的2年结果可以:(a)在新生儿治疗前, 阶段,确定那些高风险的患者,以发展不良的2年结果,所以我们的治疗试验可以集中在 对那些高风险患者进行治疗,并避免对低风险患者进行不必要的治疗;以及(B)在治疗后, 早期(新生儿阶段)评估治疗效果,避免等到2年才观察结果 从而加速治疗创新。脑磁共振成像(MRI)正在探索, NIH新生儿研究网络(NRN)作为一种潜在的生物标志物,以量化神经基质和预测2- 年不良后果。然而,专家解释和评分系统,目前的规范,只考虑一个 选定的一组脑区域(例如,丘脑、基底神经节、内囊和其他通常沿着 皮质脊髓束),并且仅考虑MRI指标,而不是最佳地将MRI与临床变量组合。的 最近兴起的新的病变-症状映射(LSM)技术使我们能够进行第一项研究,以量化 体素,区域和整个大脑的纤维神经基质,在一个更全面, 多变量方式比NRN评分系统。我们使用第一代LSM的初步结果 (voxel-wise LSM,或V-LSM)已经导致了新的发现,新的区域和左半球的优势,在大脑中。 神经基质,以前没有考虑在NRN评分系统。在R21中,我们的Aim 1将 进一步使用第二代LSM(即,多变量LSM,或M-LSM)和第三代LSM(即, 连接组LSM或C-LSM),以更全面地探索2年不良HIE的神经基质 结果。我们的目标2将提出一种新的机器学习和深度学习算法,称为预测LSM 或P-LSM,比较并联合收割机的三代LSM的结果,并应用这种新算法 为了预测HIE患者的个体结果,不添加和添加临床变量(目的2a和2b, 分别)。我们的总体假设是,定量和彻底表征的神经基板, 我们即将开发的机器学习和深度学习框架可以预测2年的不良HIE结果 比目前的NRN分数更准确。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yangming Ou其他文献

Yangming Ou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yangming Ou', 18)}}的其他基金

Neural Substrate of Outcomes after Neonatal Hypoxic Ischemic Encephalopathy
新生儿缺氧缺血性脑病后结局的神经基质
  • 批准号:
    10452978
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
Multi-site Data for Nutrition Studies in Healthy Early Childhood
健康幼儿营养研究的多站点数据
  • 批准号:
    10528096
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
Multi-site Data for Nutrition Studies in Healthy Early Childhood
健康幼儿营养研究的多站点数据
  • 批准号:
    10676921
  • 财政年份:
    2022
  • 资助金额:
    $ 22.56万
  • 项目类别:
Multi-Site Clinical Data to Power MRI Biomarker of Neonatal Brain Injury
多部位临床数据为新生儿脑损伤的 MRI 生物标志物提供动力
  • 批准号:
    10391525
  • 财政年份:
    2021
  • 资助金额:
    $ 22.56万
  • 项目类别:
Multi-Site Clinical Data to Power MRI Biomarker of Neonatal Brain Injury
多部位临床数据为新生儿脑损伤的 MRI 生物标志物提供动力
  • 批准号:
    10194889
  • 财政年份:
    2021
  • 资助金额:
    $ 22.56万
  • 项目类别:

相似海外基金

REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
  • 批准号:
    2349771
  • 财政年份:
    2024
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
  • 批准号:
    23H01489
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
  • 批准号:
    2216835
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
  • 批准号:
    23H01882
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
  • 批准号:
    10635210
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 22.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了