Circuit structure and dynamics in prefrontal-limbic networks
前额叶边缘网络的电路结构和动力学
基本信息
- 批准号:10578724
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAction PotentialsAddressAdultAffectAffectiveAmygdaloid structureAnatomyAnesthesia proceduresAnimalsAnteriorAreaBackBehaviorBehavioralCarbacholCellsChemosensitizationClassificationCognitionCognitiveCommunicationComplexConfocal MicroscopyElectron MicroscopyElectrophysiology (science)EmotionalEmotionsEquilibriumExhibitsFrequenciesIn VitroInhibitory SynapseInterneuronsLateralLimbic SystemMacaca mulattaMeasuresMediatingMembraneMental disordersMonkeysMood DisordersMotivationMotorNeuroanatomyNeuromodulatorNeuronsOutputPathway interactionsPatternPhysiologicalPrefrontal CortexPrimatesPropertyRegulationRodentSensoryShort-Term MemorySignal TransductionStressStructureSynapsesSystemTechniquesTestingTimeTracerUpdateWorkcingulate cortexcognitive taskemotion regulationexecutive functionflexibilityhippocampal pyramidal neuronin vivoinhibitory neuroninsightnerve supplyneuralneurochemistryneuropathologyneuroregulationoptogeneticspharmacologicpostsynapticpresynapticreceptorrecruitresponsesignal processing
项目摘要
PROJECT ABSTRACT
The lateral prefrontal cortex (LPFC) and anterior cingulate cortex (ACC) in primates interact with each other, as
key components of the executive control network. However, these areas participate in distinct extrinsic circuits
and exhibit temporally-distinct activation patterns as they enhance task-relevant and suppresses task-irrelevant
information to guide behavior. The LPFC rapidly encodes and transiently stores sensory-motor information for
continuous updating of information in “working memory” for the task at hand. As temporal and cognitive-
emotional demands increase (i.e., a higher number of temporally distinct motivational variables to consider),
the ACC is additionally engaged. The ACC, as part of the limbic network, can integrate emotional and
mnemonic information to modulate cognitive tasks that span both rapid and longer timescales. Cortical
excitatory and inhibitory synaptic networks determine the spatial and temporal dynamics of signal
enhancement or suppression in cognitive tasks. The scientific premise of this proposal is that the key
differences in the temporal dynamics of processing in ACC vs LPFC in behavior are due to differences network
excitatory-inhibitory (E:I) synaptic balance in these areas, which remain poorly understood. Our recent work
suggests that higher inhibitory tone and longer membrane time constant in ACC neurons likely contribute to a
longer temporal range for integration. The overall hypothesis of this proposal is that highly distinctive
excitatory-inhibitory and neuromodulatory circuits in the ACC and LPFC underlie differential temporal dynamics
of signal processing for cognitive-emotional integration by these two areas. Using multi-scale neuroanatomical,
in vitro and in vivo electrophysiological, pharmacologic and optogenetic techniques in adult rhesus monkeys
(Macaca mulatta), we aim to study the properties of inhibitory circuits that control the temporal dynamics of
ACC vs LPFC pyramidal neuron activity, and how limbic input from the amygdala influences communication
within the ACC-LPFC network. We will study GABAergic and neuromodulatory influences on these prefrontal
networks that are highly implicated in the regulation of stress and emotions. In Aim 1 we will investigate the
properties of temporally-distinct inhibitory circuits, using in vitro electrophysiological and pharmacological
techniques to isolate fast versus slow inhibitory currents, as well as neuroanatomical techniques to classify
inhibitory neurons based on their receptors and innervation patterns. In Aim 2 we will determine whether
differential inhibitory signaling in ACC vs LPFC affects capacities for diverse network oscillations in vitro and in
vivo. In Aim 3 we will study the properties of ACCamygdala vs ACCLPFC projections and how these
neurons receive synaptic input from the amygdala, using optogenetics and 3D electron microscopy. Disruption
of the E:I balance and oscillatory dynamics within this ACC-LPFC prefrontal-limbic network is the core
neuropathology in cognitive-affective psychiatric disorders. The proposed study will shed light on the
underlying circuit mechanisms of normal and disrupted cognitive-emotional integration in primates.
项目摘要
灵长类动物的外侧前额叶皮质(LPFC)和前扣带回皮质(ACC)相互作用,如
执行控制网络的关键组件。然而,这些区域参与了不同的外在电路
在增强任务相关性和抑制任务无关时,呈现出时间上不同的激活模式
指导行为的信息。LPFC快速编码并瞬时存储感觉-运动信息,用于
持续更新手头任务的“工作记忆”中的信息。作为时间和认知-
情感需求增加(即,要考虑的时间上不同的动机变量的数量更多),
此外,行政协调委员会还在参与其中。作为边缘网络的一部分,ACC可以整合情感和
助记信息调节认知任务,既有快速的,也有较长时间的。大脑皮层
兴奋性和抑制性突触网络决定信号的空间和时间动力学
认知任务中的增强或抑制。这一提议的科学前提是,关键是
ACC和LPFC在行为加工的时间动力学上的差异是由于网络的不同
这些区域的兴奋性-抑制性(E:I)突触平衡,目前仍知之甚少。我们最近的工作
提示ACC神经元中较高的抑制性音调和较长的膜时间常数可能有助于
时间范围更长,便于集成。这一提议的总体假设是非常独特的
时差动力学基础上的ACC和LPFC的兴奋-抑制和神经调制回路
这两个领域对认知-情绪整合的信号处理。利用多尺度神经解剖学,
成年恒河猴体内外电生理、药理和光遗传学技术
(猕猴),我们的目标是研究控制时间动力学的抑制电路的特性。
ACC与LPFC锥体神经元活动,以及杏仁核边缘输入如何影响交流
在ACC-LPFC网络内。我们将研究GABA能和神经调节对这些前额叶的影响
与压力和情绪的调节密切相关的网络。在目标1中,我们将调查
用体外电生理学和药理学方法研究时间不同抑制回路的特性
分离快慢抑制电流的技术,以及分类的神经解剖学技术
基于其受体和神经支配模式的抑制性神经元。在目标2中,我们将确定
ACC和LPFC的差异抑制信号影响体外和体内不同网络振荡的能力
活着。在目标3中,我们将研究ACC杏仁核与ACCLPFC投射的性质,以及这些投射是如何
利用光遗传学和3D电子显微镜,神经元接受来自杏仁核的突触输入。颠覆
在这个ACC-LPFC前额-边缘网络内的E:I平衡和振荡动力学是核心
认知-情感性精神障碍的神经病理学。拟议的研究将揭示
灵长类动物认知-情绪整合正常和中断的潜在回路机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Medalla其他文献
Maria Medalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Medalla', 18)}}的其他基金
Epigenetic determinants in oligodendrocyte maturation in Down Syndrome
唐氏综合症少突胶质细胞成熟的表观遗传决定因素
- 批准号:
10527889 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Transcriptomic, physiological, and neurochemical profiling of cortico-limbic projection neurons in monkey anterior cingulate cortex
猴子前扣带皮层皮质边缘投射神经元的转录组学、生理学和神经化学分析
- 批准号:
10542445 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Transcriptomic, physiological, and neurochemical profiling of cortico-limbic projection neurons in monkey anterior cingulate cortex
猴子前扣带皮层皮质边缘投射神经元的转录组学、生理学和神经化学分析
- 批准号:
10371649 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Circuit structure and dynamics in prefrontal-limbic networks
前额叶边缘网络的电路结构和动力学
- 批准号:
10363714 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Physiology and structure of prefrontal projections to memory and motor circuits
记忆和运动回路前额叶投射的生理学和结构
- 批准号:
9301650 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Physiology and structure of prefrontal projections to memory and motor circuits
记忆和运动回路前额叶投射的生理学和结构
- 批准号:
8566202 - 财政年份:2013
- 资助金额:
$ 41.25万 - 项目类别:
Physiology and structure of prefrontal projections to memory and motor circuits
记忆和运动回路前额叶投射的生理学和结构
- 批准号:
8715865 - 财政年份:2013
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 41.25万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 41.25万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 41.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




