Analyze: Machine Learning for Mobility Data

分析:移动数据的机器学习

基本信息

  • 批准号:
    10581471
  • 负责人:
  • 金额:
    $ 37.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-04 至 2025-11-30
  • 项目状态:
    未结题

项目摘要

Limited mobility due to conditions like osteoarthritis (OA), cerebral palsy, and Parkinson’s disease affects millions of individuals, at enormous personal and societal cost. Rehabilitation can dramatically improve mobility and function, but current rehabilitation practice requires in-person guidance by a skilled clinician, increasing expense and limiting access. Mobile sensing technologies are now ubiquitous and have the potential to measure patient function and guide treatment outside the clinic, but they currently fail to capture the characteristics of motion required to accurately monitor function and customize treatment. Millions of low-cost mobile sensors are generating terabytes of data that could be analyzed in combination with other data, such as images, clinical records, and video, to enable studies of unprecedented scale, but machine learning models for analyzing these large-scale, heterogeneous, time-varying data are lacking. To address these challenges, we will establish a Biomedical Technology Resource Center —The Mobilize Center. Through the leadership of an experienced scientific team, we will create and disseminate innovative tools to quantify movement biomechanics with mobile sensors. Specifically, we will: 1. Push the bounds of what we can measure via wearable sensors using models that compute muscle and joint forces and metabolic cost of locomotion. These models, based on biomechanical and machine learning models, will be disseminated via our newly created OpenSense software, which will be used by thousands of researchers to gain new insights into patient biomechanics using mobile sensors. 2. Meet the need for tools that analyze data about movement dynamics and develop machine learning models to analyze and generate insights from unstructured, high-dimensional data, including time- series (e.g., from mobile sensors), images (e.g., MRI), and video (e.g., smartphone video of a patient’s gait). 3. Provide tools needed to intervene in the real-world. We will develop algorithms to accurately quantify kinematics outside the lab for long durations using data from inertial measurement units (IMUs). We will also build behavioral models to adapt and personalize goal setting, drawing on movement records from 6 million individuals, as well as health goals and exercise for 1.7 million people. Through intensive interactions with our Collaborative Projects, we will focus on improving rehabilitation outcomes for individuals with limited mobility due to osteoarthritis, obesity, Parkinson’s disease, and cerebral palsy. The Center’s tools and services will enable researchers to revolutionize how we diagnose, monitor, and treat mobility disorders, providing tools needed to deliver precision rehabilitation at low cost and on a massive scale in the future.
由于骨关节炎(OA)、脑瘫和帕金森病等疾病导致的活动受限, 数以百万计的人,以巨大的个人和社会成本。康复治疗可以显著改善行动能力 和功能,但目前的康复实践需要由熟练的临床医生亲自指导, 费用和限制访问。移动的传感技术现在无处不在,并有可能 测量患者功能并指导诊所外的治疗,但他们目前未能捕捉到 精确监测功能和定制治疗所需的运动特性。数百万低成本 移动的传感器正在生成数TB的数据,这些数据可以与其他数据结合进行分析,例如 图像,临床记录和视频,以实现前所未有的规模的研究,但机器学习模型, 缺乏对这些大规模、异构、时变数据的分析。 为了应对这些挑战,我们将建立一个生物医学技术资源中心-动员 中心通过经验丰富的科学团队的领导,我们将创造和传播创新的 用移动的传感器量化运动生物力学的工具。 具体而言,我们将: 1.通过使用计算肌肉的模型的可穿戴传感器, 以及运动的合力和代谢成本。这些模型,基于生物力学和机器 学习模型,将通过我们新创建的OpenSense软件传播,该软件将用于 成千上万的研究人员使用移动的传感器来获得对患者生物力学的新见解。 2.满足对分析运动动力学数据和开发机器学习的工具的需求 模型来分析非结构化的高维数据并从中生成见解,包括时间- 系列(例如,来自移动的传感器),图像(例如,MRI)和视频(例如,病人的智能手机视频 步态)。 3.提供干预现实世界所需的工具。我们将开发算法来精确地量化 使用来自惯性测量单元(伊穆斯)的数据,在实验室外长时间测量运动学。我们将 我还建立行为模型,以适应和个性化的目标设定,借鉴运动记录, 600万人,以及170万人的健康目标和锻炼。 通过与我们的合作项目的密切互动,我们将专注于改善康复 由于骨关节炎、肥胖、帕金森病和脑血管病导致活动受限的个体的结局 麻痹该中心的工具和服务将使研究人员能够彻底改变我们诊断,监测和治疗疾病的方式。 治疗行动障碍,提供所需的工具,以低成本和大规模的 未来的规模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Re其他文献

Christopher Re的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Establishing best practices for the use of accelerometer measured ambient light sensor data to assess children's outdoor time
建立使用加速度计测量的环境光传感器数据来评估儿童的户外时间的最佳实践
  • 批准号:
    10731315
  • 财政年份:
    2023
  • 资助金额:
    $ 37.23万
  • 项目类别:
Training of machine learning algorithms for the classification of accelerometer-measured bednet use and related behaviors associated with malaria risk
训练机器学习算法,用于对加速计测量的蚊帐使用和与疟疾风险相关的相关行为进行分类
  • 批准号:
    10727374
  • 财政年份:
    2023
  • 资助金额:
    $ 37.23万
  • 项目类别:
Development of environmentally robust and thermally stable Microelectromechanical Systems (MEMS) based accelerometer for automotive applications
开发适用于汽车应用的环境稳定且热稳定的微机电系统 (MEMS) 加速度计
  • 批准号:
    566730-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Alliance Grants
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10444075
  • 财政年份:
    2022
  • 资助金额:
    $ 37.23万
  • 项目类别:
Use of accelerometer and gyroscope data to improve precision of estimates of physical activity type and energy expenditure in free-living adults
使用加速度计和陀螺仪数据来提高自由生活成年人身体活动类型和能量消耗的估计精度
  • 批准号:
    10617774
  • 财政年份:
    2022
  • 资助金额:
    $ 37.23万
  • 项目类别:
Investigating the validity and reliability of accelerometer-based measures of physical activity and sedentary time in toddlers (iPLAY)
研究基于加速度计的幼儿体力活动和久坐时间测量的有效性和可靠性 (iPLAY)
  • 批准号:
    475451
  • 财政年份:
    2022
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Studentship Programs
Exploration of novel pathophysiology of chemotherapy-induced peripheral neuropathy utilizing quantitative sensory testing and accelerometer
利用定量感觉测试和加速度计探索化疗引起的周围神经病变的新病理生理学
  • 批准号:
    22K17623
  • 财政年份:
    2022
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating the reliability of accelerometer-based measures of physical activity and sedentary time in toddlers
研究基于加速度计的幼儿体力活动和久坐时间测量的可靠性
  • 批准号:
    466914
  • 财政年份:
    2021
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Studentship Programs
Doctoral Dissertation Research: Leveraging Intensive Time Series of Accelerometer Data to Assess Impulsivity and Inattention in Preschool Children
博士论文研究:利用加速计数据的密集时间序列来评估学龄前儿童的冲动和注意力不集中
  • 批准号:
    2120223
  • 财政年份:
    2021
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Standard Grant
Development of a rotation-invariant accelerometer for human activity recognition
开发用于人类活动识别的旋转不变加速度计
  • 批准号:
    21K19804
  • 财政年份:
    2021
  • 资助金额:
    $ 37.23万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了