Audio Generation and Optimization from Existing Resources for Patient Education

利用现有资源生成和优化患者教育音频

基本信息

  • 批准号:
    10580849
  • 负责人:
  • 金额:
    $ 41.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Health literacy is vital to achieving and maintaining good health. Several national programs have emphasized this goal and its importance. Text is generally much more efficient and cost-effective for presenting healthcare information on a large scale than interactive tools and videos. Over the past decade, therefore, most medical information has been provided as text, e.g., via printed pamphlets or on websites. We are entering a new era where a new similarly effective mode of information dissemination is becoming increasingly available: audio accessed with mobile devices. Millions of households have and use smart speakers and virtual assistants and they are increasingly used by patients and consumers to gather information. Hospitals also plan to gradually integrate them among their tools. However, there exist few if any guidelines on optimal generation and use of audio. The overall goal of this project is to discover how to support the creation of optimal audio from existing text sources for consumer and patient education. To accomplish this, four aims are proposed. The first aim is to identify audio features that affect information comprehension and retention. Here, features in audio content and style (e.g., word frequency or grammatical complexity) of the underlying information will be tested for impact. In addition, two groups of features specific to the audio medium will be tested: the delivery features (e.g., speed and pauses) as well as meta-features (e.g., speaker characteristics such as gender or accent and bias in listeners). This first aim will rely on large-scale datasets, semi-automatically generated and augmented with user scores for comprehension gathered using Amazon Mechanical Turk (MTurk). Statistical and machine learning approaches will be used to tease out the best features and combinations. The second aim focuses on discovering how to augment text for audio and finding the optimal combination of text and audio for information comprehension and retention. Different combinations will be tested online with MTurk participants using controlled user studies. The third aim is to update, test and provide the existing online free text editor to generate optimized audio. We will also start dissemination of the tool to potential users including API access to components. The project will conclude with a summative evaluation with representative consumers recruited at a local community health center and further dissemination of preferences, practical obstacles, and best practices for the medical community to help increase health literacy through this new, popular audio medium. If successful, this project will generate best practices for the medical community in using audio as an additional method for bringing healthcare information to the general public; it will provide an online, free tool to generate audio leveraging these best practices and will include API access so that other researchers can easily integrate tool components into their research and tools; and it will provide immediate practical lessons from working with consumers relevant for clinical practice.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GONDY LEROY其他文献

GONDY LEROY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GONDY LEROY', 18)}}的其他基金

Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
  • 批准号:
    10297910
  • 财政年份:
    2021
  • 资助金额:
    $ 41.26万
  • 项目类别:
Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
  • 批准号:
    10609515
  • 财政年份:
    2021
  • 资助金额:
    $ 41.26万
  • 项目类别:
Health Information Technology to Support Autism Spectrum Disorders (ASD) Risk Assessment for Early Diagnosis
健康信息技术支持自闭症谱系障碍 (ASD) 风险评估及早期诊断
  • 批准号:
    10458014
  • 财政年份:
    2021
  • 资助金额:
    $ 41.26万
  • 项目类别:
Audio Generation and Optimization from Existing Resources for Patient Education
利用现有资源生成和优化患者教育音频
  • 批准号:
    10439893
  • 财政年份:
    2015
  • 资助金额:
    $ 41.26万
  • 项目类别:
Audio Generation and Optimization from Existing Resources for Patient Education
利用现有资源生成和优化患者教育音频
  • 批准号:
    10295641
  • 财政年份:
    2015
  • 资助金额:
    $ 41.26万
  • 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
  • 批准号:
    8240419
  • 财政年份:
    2011
  • 资助金额:
    $ 41.26万
  • 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
  • 批准号:
    8714350
  • 财政年份:
    2011
  • 资助金额:
    $ 41.26万
  • 项目类别:
Large-scale evaluation of text features affecting perceived and actual text diffi
影响感知和实际文本差异的文本特征的大规模评估
  • 批准号:
    8018414
  • 财政年份:
    2011
  • 资助金额:
    $ 41.26万
  • 项目类别:
Visualization of Consumer Health Information
消费者健康信息的可视化
  • 批准号:
    6958034
  • 财政年份:
    2005
  • 资助金额:
    $ 41.26万
  • 项目类别:
Visualization of Consumer Health Information
消费者健康信息的可视化
  • 批准号:
    7140270
  • 财政年份:
    2005
  • 资助金额:
    $ 41.26万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 41.26万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 41.26万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 41.26万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了