Structural dynamics of sphingosine-1-phosphate transporters as key therapeutic targets for immune system modulation and cancer
1-磷酸鞘氨醇转运蛋白作为免疫系统调节和癌症关键治疗靶点的结构动力学
基本信息
- 批准号:10586751
- 负责人:
- 金额:$ 40.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-20 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAntibioticsBinding SitesBiological AssayCationsCell membraneCellsCellular MembraneCoupledCouplingCryoelectron MicroscopyDataDefectDetergentsDevelopmentDiseaseDrug TargetingElectron Spin Resonance SpectroscopyElectronsEndothelial CellsFamilyFamily memberFoundationsGoalsGrowthHomologous GeneHumanImmune systemImmunosuppressive AgentsImmunotherapyImpairmentIn VitroInorganic Phosphate TransporterIonsLigandsLipid BilayersLipidsLymphocyteMalignant NeoplasmsMammalian CellMapsMediatingMembraneMembrane LipidsMicellesModelingMolecular ConformationMulti-Drug ResistanceMusMutationMycobacterium smegmatisNeoplasm MetastasisNeptuniumPhysiologic pulsePhysiologicalPlayPoisonProteinsProtonsPublic HealthRegulationResearchResolutionRoleSamplingSignal TransductionSpectrum AnalysisSphingolipidsSpin LabelsStructureTechniquesTestingTherapeuticbiophysical techniquescell motilityconformational conversionefflux pumpextracellularfeasibility researchflexibilitygenome-widein vivoinnovationmigrationmimeticsmodel buildingmolecular dynamicsmolecular modelingmutantnanodisknanoscalenovel therapeutic interventionparticlepreventprotonationrestraintsimulationsphingosine 1-phosphatestoichiometrystructural determinantstherapeutic targettumor
项目摘要
Project Summary/Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) plays a key role in regulating the growth, survival and
migration of mammalian cells. S1P is produced intracellularly and then released extracellularly to engage in its
(patho)physiological roles. The Spinster (Spns) lipid transporters of the major facilitator superfamily (MFS) are
critical for transporting S1P across cellular membranes. Of the three Spns proteins in humans, Spns2 functions
as the main S1P transporter, which makes it a potential drug target for modulating S1P export and signaling. An
endothelial cell-specific defect in Spns2 results in impaired egress of lymphocytes and prevents tumor metastasis
in mice, strongly suggesting that Spns2 could be an effective target for reducing metastases by increasing the
efficacy of immunotherapy. Thus, detailed characterization of the Spns2 mechanism is of high significance for
the development of novel therapeutic strategies for diseases associated with S1P signaling and to target Spns2
as a potential immunosuppressant. The overall goal of this proposal is to define the functional mechanism of the
Spns family of sphingolipid transporters. The mechanism of Spns2-mediated S1P transport across cellular
membrane remains poorly understood, mainly due to the lack of structural information (Aims 1 and 2). In
addition, the precise mechanism of Spns2 regulation is still unclear (Aim 3). We recently defined the proton-
dependent conformational dynamics of a bacterial Spns transporter. Our approach capitalizes on a powerful
pulsed EPR technique known as Double Electron Electron Resonance (DEER) spectroscopy, an effective
nanometer-scale ruler, in the context of high-resolution structures. It is informed by functional studies and
contextualized through collaborative molecular modeling. Using this integrated approach, we conduct a thorough
mechanistic comparison between human Spns2 and its homologs. The objectives of this proposal are to define
the cation- and substrate-coupled conformational cycle of human Spns2 and its bacterial homologs in lipid
bilayers. To determine the conformational states involved in the alternating access mechanism, we will apply
DEER spectroscopy under conditions expected to stabilize transport intermediates and combine the results with
restraint-assisted molecular dynamics to map ligand-coupled conformational changes. Using a similar integrated
approach to define the transport mechanism of other Spns family members and their prokaryotic homologs, we
will identify the key commonalities and differences in their mechanisms, highlighting the mechanistic flexibility
enabling their diverse function with transformative therapeutic potential.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Reza Dastvan其他文献
Reza Dastvan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Reza Dastvan', 18)}}的其他基金
Novel molecular mechanism for extracellular release of proteins implicated in metastatic cancer
与转移性癌症有关的蛋白质细胞外释放的新分子机制
- 批准号:
10493547 - 财政年份:2022
- 资助金额:
$ 40.81万 - 项目类别:
Novel molecular mechanism for extracellular release of proteins implicated in metastatic cancer
与转移性癌症有关的蛋白质细胞外释放的新分子机制
- 批准号:
10680461 - 财政年份:2022
- 资助金额:
$ 40.81万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 40.81万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 40.81万 - 项目类别:
Studentship