Neural Processing of Speech Signals in Children Who Stutter

口吃儿童语音信号的神经处理

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Developmental stuttering is a dynamic, multifactorial neurodevelopmental disorder characterized by unintended disruptions in fluent speech production. Speech planning and production rely on intact speech sound processing, which helps develop and maintain internal speech sound models. Unstable internal speech sound models, which regulate motor signals in the speech motor articulatory network (SMAN), may contribute to disfluent speech in children who stutter (CWS). In concert with frontoparietal attention network, SMAN also modulates attention to phonetic/syllabic information in speech, particularly in difficult listening conditions. CWS often perform worse on speech processing tasks than fluent peers, especially on more challenging tasks, potentially due to inefficiencies in these auxiliary networks. However, the underlying causes of speech processing deficits in CWS remain unclear. A mechanistic understanding of speech sound processing will facilitate future development of neurobiologically informed stuttering interventions that target the specific neural deficits in CWS. The current proposal extends previous findings of atypical speech sound processing in CWS. Combining the complementary expertise of a cross-disciplinary team of investigators, the current project will evaluate the integrity of neural processes underlying speech sound encoding and the ways in which these processes are modulated by task demands using multimodal neuroimaging and systems-level computational modeling approaches. Aim 1 will measure electroencephalography (EEG) in 150 CWS and 150 fluent peers, aged 7-15 years, while children complete four tasks of varying difficulty: A) a syllable identification task (/ba/ vs /da/) in quiet; B) a continuous speech narrative comprehension task in quiet; and C & D) complex speech encoding tasks with syllables and continuous speech presented simultaneously, with attention directed either toward syllables (C) or toward the narrative (D). Directly comparing neural responses elicited in simpler and more complex listening conditions (A/C, B/D) and responses to the same stimuli when attended vs. ignored (C/D) is critical for characterizing effects of task demands on speech sound processing. State-of-the-art machine-learning approaches for EEG will enable simultaneous extraction of temporally precise neural representations of fast and slow temporal fluctuations in speech in the transformation from acoustic to syllable representations. Aim 2 will leverage functional MRI (fMRI) to assess multiple neural systems underlying speech sound processing in CWS. Employing the same tasks in the same participants as Aim 1 will allow for quantifying neural activations and representations in auditory, SMAN, and attention networks during simple and complex speech tasks. Aim 3 will develop a systems-level computational model of speech sound processing in CWS. The model, based on combined EEG and fMRI data, will simulate how interactions between neural networks mediate task performance across listening conditions. This project will provide a mechanistic understanding of speech sound processing in CWS and a unique, curated, open access, multimodal neuroimaging dataset that will be a lasting resource for the field of stuttering.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amanda M Hampton Wray其他文献

Amanda M Hampton Wray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amanda M Hampton Wray', 18)}}的其他基金

Supplement to Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号神经处理的补充
  • 批准号:
    10610639
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号的神经处理
  • 批准号:
    10337369
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
Attentional control in children who stutter
口吃儿童的注意力控制
  • 批准号:
    10055438
  • 财政年份:
    2018
  • 资助金额:
    $ 50.96万
  • 项目类别:
Supplement to Attentional control in children who stutter
口吃儿童注意力控制的补充
  • 批准号:
    10401531
  • 财政年份:
    2018
  • 资助金额:
    $ 50.96万
  • 项目类别:

相似国自然基金

多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目

相似海外基金

22 UKRI-SBE: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
22 UKRI-SBE:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    BB/X013103/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Research Grant
Mechanisms of auditory selective attention for speech and non-speech stimuli
对言语和非言语刺激的听觉选择性注意机制
  • 批准号:
    10535232
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    2414066
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
Development of test method and hearing aid technology focusing on attention function of patients with auditory processing disorder
专注于听觉处理障碍患者注意力功能的测试方法及助听器技术开发
  • 批准号:
    23K17600
  • 财政年份:
    2023
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Brain Electrical Dynamics for Top-Down Auditory Attention
自上而下听觉注意力的脑电动力学
  • 批准号:
    RGPIN-2019-05659
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Discovery Grants Program - Individual
Parametrization and validation of the N-SEEV Attention Model for Visual and Auditory scenes
视觉和听觉场景的 N-SEEV 注意力模型的参数化和验证
  • 批准号:
    RGPIN-2022-04852
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Discovery Grants Program - Individual
Nanomaterials Based Dry Electroencephalography Electrodes for Auditory Attention Decoding in Hearing Assistance Devices
基于纳米材料的干式脑电图电极,用于助听设备中的听觉注意力解码
  • 批准号:
    570743-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Alliance Grants
Attention and Auditory Scene Analysis
注意力和听觉场景分析
  • 批准号:
    RGPIN-2021-02721
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Discovery Grants Program - Individual
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
  • 批准号:
    2219521
  • 财政年份:
    2022
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
Excellence in Research: Incorporating Attention into Computational Auditory Scene Analysis Using Spectral Clustering with Focal Templates
卓越研究:使用带有焦点模板的谱聚类将注意力纳入计算听觉场景分析
  • 批准号:
    2100874
  • 财政年份:
    2021
  • 资助金额:
    $ 50.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了