Supplement to Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号神经处理的补充
基本信息
- 批准号:10610639
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-09 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAttentionAuditoryChildCommunicationComplexComprehensionComputer ModelsDataData SetDevelopmentDevelopmental StutteringElectroencephalographyFunctional Magnetic Resonance ImagingFutureInterventionMachine LearningMeasuresMediatingModelingMotorNeurobiologyNeurodevelopmental DisorderParticipantProcessProductionQuality of lifeResearch PersonnelResourcesSignal TransductionSpeechSpeech SoundStimulusStutteringSystemTask Performancesagedbasedirected attentionimaging systeminnovationmultimodal neuroimagingneural networkneurophysiologypeerrelating to nervous systemresponsespeech processing
项目摘要
PROJECT SUMMARY/ABSTRACT
Developmental stuttering is a dynamic, multifactorial neurodevelopmental disorder characterized by unintended
disruptions in fluent speech production. Speech planning and production rely on intact speech sound processing,
which helps develop and maintain internal speech sound models. Unstable internal speech sound models, which
regulate motor signals in the speech motor articulatory network (SMAN), may contribute to disfluent speech in
children who stutter (CWS). In concert with frontoparietal attention network, SMAN also modulates attention to
phonetic/syllabic information in speech, particularly in difficult listening conditions. CWS often perform worse on
speech processing tasks than fluent peers, especially on more challenging tasks, potentially due to inefficiencies
in these auxiliary networks. However, the underlying causes of speech processing deficits in CWS remain
unclear. A mechanistic understanding of speech sound processing will facilitate future development of
neurobiologically informed stuttering interventions that target the specific neural deficits in CWS. The current
proposal extends previous findings of atypical speech sound processing in CWS. Combining the complementary
expertise of a cross-disciplinary team of investigators, the current project will evaluate the integrity of neural
processes underlying speech sound encoding and the ways in which these processes are modulated by task
demands using multimodal neuroimaging and systems-level computational modeling approaches. Aim 1 will
measure electroencephalography (EEG) in 150 CWS and 150 fluent peers, aged 7-15 years, while children
complete four tasks of varying difficulty: A) a syllable identification task (/ba/ vs /da/) in quiet; B) a continuous
speech narrative comprehension task in quiet; and C & D) complex speech encoding tasks with syllables and
continuous speech presented simultaneously, with attention directed either toward syllables (C) or toward the
narrative (D). Directly comparing neural responses elicited in simpler and more complex listening conditions
(A/C, B/D) and responses to the same stimuli when attended vs. ignored (C/D) is critical for characterizing effects
of task demands on speech sound processing. State-of-the-art machine-learning approaches for EEG will enable
simultaneous extraction of temporally precise neural representations of fast and slow temporal fluctuations in
speech in the transformation from acoustic to syllable representations. Aim 2 will leverage functional MRI (fMRI)
to assess multiple neural systems underlying speech sound processing in CWS. Employing the same tasks in
the same participants as Aim 1 will allow for quantifying neural activations and representations in auditory,
SMAN, and attention networks during simple and complex speech tasks. Aim 3 will develop a systems-level
computational model of speech sound processing in CWS. The model, based on combined EEG and fMRI data,
will simulate how interactions between neural networks mediate task performance across listening conditions.
This project will provide a mechanistic understanding of speech sound processing in CWS and a unique, curated,
open access, multimodal neuroimaging dataset that will be a lasting resource for the field of stuttering.
项目摘要/摘要
发育性口吃是一种动态的、多因素的神经发育障碍,其特征是
在流利的演讲过程中受到干扰。语音计划和生产依赖于完整的语音处理,
这有助于开发和维护内部语音模型。不稳定的内部语音模型,这
调节言语运动发音网络中的运动信号,可能会导致言语不流畅
口吃儿童(CWS)。与额叶顶叶注意网络相一致,SMAN还调节注意
语音中的语音/音节信息,特别是在听力困难的情况下。CWS在以下方面的表现通常较差
语音处理任务比流利的同行更多,特别是在更具挑战性的任务上,可能是因为效率低下
在这些辅助网络中。然而,CWS语音处理缺陷的根本原因仍然存在
不清楚。对语音处理的机械性理解将有助于未来语音处理的发展
针对CWS中特定神经缺陷的神经生物学信息口吃干预。海流
该建议扩展了CWS中非典型语音处理的先前发现。结合互补性
一个跨学科的研究团队的专业知识,目前的项目将评估神经的完整性
语音编码的基本过程以及这些过程被任务调制的方式
使用多模式神经成像和系统级计算建模方法的需求。目标1将
对150名7~15岁CWS和150名流利同龄人进行脑电检测
完成四项难度不同的任务:A)安静地完成音节识别任务(/ba/vs/da/);B)连续的
安静中的语音叙事理解任务;以及C&D)带音节的复杂语音编码任务和
同时呈现的连续语音,注意力指向音节(C)或指向
叙事(D)。在更简单和更复杂的听力条件下直接比较神经反应
(A/C、B/D)和对相同刺激的反应(C/D)是表征效果的关键
语音处理的任务需求。最先进的脑电机器学习方法将使
快速和缓慢时间波动的时间精确神经表示的同时提取
语音在从声学到音节的转化中表现出来。AIM 2将利用功能磁共振成像(FMRI)
评估CWS中语音处理的多个神经系统。使用相同的任务
与目标1相同的参与者将允许量化听觉中的神经激活和表示,
SMAN和注意网络在简单和复杂的语音任务中。AIM 3将开发一个系统级的
CWS中语音处理的计算模型。该模型基于组合的脑电和功能磁共振数据,
将模拟神经网络之间的交互如何在不同的收听条件下调节任务性能。
该项目将提供对CWS中语音处理的机械理解,并提供一个独特的、经过策划的、
开放获取,多模式神经成像数据集,将成为口吃领域的持久资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amanda M Hampton Wray其他文献
Amanda M Hampton Wray的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amanda M Hampton Wray', 18)}}的其他基金
Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号的神经处理
- 批准号:
10337369 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Neural Processing of Speech Signals in Children Who Stutter
口吃儿童语音信号的神经处理
- 批准号:
10589099 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Supplement to Attentional control in children who stutter
口吃儿童注意力控制的补充
- 批准号:
10401531 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
22 UKRI-SBE: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
22 UKRI-SBE:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
BB/X013103/1 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Research Grant
Mechanisms of auditory selective attention for speech and non-speech stimuli
对言语和非言语刺激的听觉选择性注意机制
- 批准号:
10535232 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
2414066 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Development of test method and hearing aid technology focusing on attention function of patients with auditory processing disorder
专注于听觉处理障碍患者注意力功能的测试方法及助听器技术开发
- 批准号:
23K17600 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Brain Electrical Dynamics for Top-Down Auditory Attention
自上而下听觉注意力的脑电动力学
- 批准号:
RGPIN-2019-05659 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Parametrization and validation of the N-SEEV Attention Model for Visual and Auditory scenes
视觉和听觉场景的 N-SEEV 注意力模型的参数化和验证
- 批准号:
RGPIN-2022-04852 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
Nanomaterials Based Dry Electroencephalography Electrodes for Auditory Attention Decoding in Hearing Assistance Devices
基于纳米材料的干式脑电图电极,用于助听设备中的听觉注意力解码
- 批准号:
570743-2021 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Alliance Grants
Attention and Auditory Scene Analysis
注意力和听觉场景分析
- 批准号:
RGPIN-2021-02721 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Discovery Grants Program - Individual
SBE-UKRI: Contextually and probabilistically weighted auditory selective attention: from neurons to networks
SBE-UKRI:上下文和概率加权听觉选择性注意:从神经元到网络
- 批准号:
2219521 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Excellence in Research: Incorporating Attention into Computational Auditory Scene Analysis Using Spectral Clustering with Focal Templates
卓越研究:使用带有焦点模板的谱聚类将注意力纳入计算听觉场景分析
- 批准号:
2100874 - 财政年份:2021
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant