Data Management & Analysis Core (DMAC)
数据管理
基本信息
- 批准号:10576455
- 负责人:
- 金额:$ 13.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdherenceAdoptedAdoptionArchitectureArchivesBiometryCardiovascular systemCodeCollaborationsCommunitiesComplexComputer softwareComputersCoupledDataData AnalysesData CollectionData Management ResourcesData SecurityData SetData Storage and RetrievalDatabase Management SystemsDevelopmentDimensionsEducationEducational workshopElementsEnsureEnvironmentEnvironmental HealthExperimental DesignsExperimental ModelsExposure toFAIR principlesFacultyFree Radical FormationFree RadicalsFunctional disorderFundingGoalsHealthHumanImageIndividualInformaticsInterdisciplinary StudyInvestigationKnowledgeLungMediationMethodologyMethodsMissionModelingPathway interactionsPersonsPostdoctoral FellowPreparationProgram Research Project GrantsProtocols documentationPublic HealthPublicationsQuality ControlRandomizedReproducibilityResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResourcesSamplingScienceSecureServicesSourceSpeedStandardizationStatistical Data InterpretationStatistical ModelsSuperfundSurvival AnalysisSystemTechnologyTestingTimeTrainingWorkcomplex datacomputerized toolsdata acquisitiondata managementdata qualitydata reductiondata sharingdata visualizationdata warehousedesignexperiencegraduate studentimprovedinnovationinstrumentinvestigator trainingkinetic modellarge datasetslecturesmachine learning methodmembermultidimensional datamultidisciplinarynovelnovel strategiesopen datapreventprogramsquality assurancerespiratory healthsemiparametricskillssuccesstheoriestimelinetool
项目摘要
Project Summary/Abstract: Data Management and Analysis Core (DMAC)
The Data Management and Analysis Core (DMAC) is designed to enhance the LSU Superfund Research
Program's (SRP’s) understanding of how environmentally persistent free radicals (EPFRs) induce
pulmonary/cardiovascular dysfunction, and how to prevent formation, enhance decay, and limit exposure to
EPFRs, with the ultimate goal of improving human health and the environment. The five Projects and
supporting Cores in the LSU SRP present considerable data management and biostatistical challenges that
are crucial to the overall success of the Center. The DMAC’s Specific Aims are to (1) Develop and implement a
comprehensive data management plan for LSU SRP; (2) Develop and implement informatics solutions,
including data collection, distribution, and analysis tools and secure storage for data generated by LSU SRP
Projects and Cores; (3) Provide statistical expertise to SRP Projects and Cores; (4) Provide expertise in the
application and development of novel statistical models and methodology for analysis of complex
multidimensional data; (5) Provide educational initiatives and resources to serve a wide audience of graduate
students, postdoctoral researchers, and junior faculty. DMAC members possess the knowledge, skills, and
experiences necessary for tackling the complex multi-disciplinary issues to be addressed by the LSU SRP. We
will implement a comprehensive data management strategy leveraging recent advances within the LSU system
in high-speed computing and data distribution, along with stable and secure data collection, management, and
storage platforms for facilitating multi-disciplinary collaborations. Our Core is committed to promoting
transparent and reproducible research through the adoption of software, providing time-stamped version
control over documents, files, and code, such as the Open Science Framework and the workflowr R package
for statistical analysis. The DMAC biostatisticians will expand the toolsets available to the Superfund research
community by developing novel approaches and methods for understanding the relationship between EPFR
exposures and respiratory health effects using (multivariate) multiple mediation analysis, as well as the use of
reliable machine learning methods for dimension reduction in the investigation of the microstructural pathway
of EPFR formation and decay mechanisms, among other advancements. Last, the DMAC will develop and
promote a wide array of initiatives in various formats and venues for educating SRP investigators, postdoctoral
researchers, and graduate students on topics such as effective data management strategies, study design
principles, and on conducting transparent, valid, generalizable, and repeatable research.
数据管理与分析核心(Data Management and Analysis Core,DMAC)
数据管理和分析核心(DMAC)旨在加强LSU超级基金研究
计划(SRP)对环境持久性自由基(EPFRs)如何诱导
肺/心血管功能障碍,以及如何防止形成,增强衰变,并限制暴露于
EPFR的最终目标是改善人类健康和环境。五个项目和
支持LSU SRP中的核心提出了相当大的数据管理和生物统计挑战,
对中心的整体成功至关重要。DMAC的具体目标是(1)开发和实施
LSU SRP的综合数据管理计划;(2)开发和实施信息学解决方案,
包括数据收集、分发和分析工具,以及LSU SRP生成的数据的安全存储
项目和核心;(3)为SRP项目和核心提供统计专业知识;(4)为SRP项目和核心提供统计专业知识;(5)为SRP项目和核心提供统计专业知识。
应用和发展新的统计模型和方法分析复杂的
多维数据;(5)提供教育倡议和资源,为广大受众的研究生
学生,博士后研究人员和初级教师。DMAC成员拥有知识、技能和
处理复杂的多学科问题所需的经验,由路易斯安那州立大学SRP解决。我们
将利用路易斯安那州立大学系统的最新进展,实施全面的数据管理战略
在高速计算和数据分发中,沿着稳定和安全的数据收集、管理和
用于促进多学科协作的存储平台。我们的核心致力于促进
通过采用软件进行透明和可复制的研究,提供时间戳版本
对文档、文件和代码的控制,如开放科学框架和workflowr R包
用于统计分析。DMAC生物统计学家将扩大超级基金研究可用的工具集
通过开发新的途径和方法来理解EPFR之间的关系,
使用(多变量)多重中介分析,以及使用
可靠的机器学习方法,用于在微观结构路径研究中进行降维
EPFR的形成和衰变机制,以及其他进展。最后,DMAC将发展和
促进各种形式和场所的广泛举措,以教育SRP调查人员,博士后
研究人员和研究生的主题,如有效的数据管理策略,研究设计
原则,并进行透明,有效,可推广和可重复的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald E Mercante其他文献
Differential requirement for MEK Partner 1 in DU145 prostate cancer cell migration
- DOI:
10.1186/1478-811x-7-26 - 发表时间:
2009-11-23 - 期刊:
- 影响因子:8.900
- 作者:
Electa R Park;Ashok K Pullikuth;Evangeline M Bailey;Donald E Mercante;Andrew D Catling - 通讯作者:
Andrew D Catling
Donald E Mercante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald E Mercante', 18)}}的其他基金
相似海外基金
An innovative, AI-driven prehabilitation platform that increases adherence, enhances post-treatment outcomes by at least 50%, and provides cost savings of 95%.
%20创新、%20AI驱动%20康复%20平台%20%20增加%20依从性、%20增强%20治疗后%20结果%20by%20at%20至少%2050%、%20和%20提供%20成本%20节省%20of%2095%
- 批准号:
10057526 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Grant for R&D
Improving Repositioning Adherence in Home Care: Supporting Pressure Injury Care and Prevention
提高家庭护理中的重新定位依从性:支持压力损伤护理和预防
- 批准号:
490105 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Operating Grants
I-Corps: Medication Adherence System
I-Corps:药物依从性系统
- 批准号:
2325465 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
Unintrusive Pediatric Logging Orthotic Adherence Device: UPLOAD
非侵入式儿科记录矫形器粘附装置:上传
- 批准号:
10821172 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Nuestro Sueno: Cultural Adaptation of a Couples Intervention to Improve PAP Adherence and Sleep Health Among Latino Couples with Implications for Alzheimer’s Disease Risk
Nuestro Sueno:夫妻干预措施的文化适应,以改善拉丁裔夫妇的 PAP 依从性和睡眠健康,对阿尔茨海默病风险产生影响
- 批准号:
10766947 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
CO-LEADER: Intervention to Improve Patient-Provider Communication and Medication Adherence among Patients with Systemic Lupus Erythematosus
共同领导者:改善系统性红斑狼疮患者的医患沟通和药物依从性的干预措施
- 批准号:
10772887 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Antiretroviral therapy adherence and exploratory proteomics in virally suppressed people with HIV and stroke
病毒抑制的艾滋病毒和中风患者的抗逆转录病毒治疗依从性和探索性蛋白质组学
- 批准号:
10748465 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Improving medication adherence and disease control for patients with multimorbidity: the role of price transparency tools
提高多病患者的药物依从性和疾病控制:价格透明度工具的作用
- 批准号:
10591441 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Development and implementation of peer-facilitated decision-making and referral support to increase uptake and adherence to HIV pre-exposure prophylaxis in African Caribbean and Black communities in Ontario
制定和实施同行协助决策和转介支持,以提高非洲加勒比地区和安大略省黑人社区对艾滋病毒暴露前预防的接受和依从性
- 批准号:
491109 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Fellowship Programs