Data Management & Analysis Core (DMAC)
数据管理
基本信息
- 批准号:10116397
- 负责人:
- 金额:$ 13.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAdoptionArchitectureArchivesBiometryCardiovascular systemCodeCollaborationsCommunitiesComplexComputer softwareComputersCoupledCustomDataData AnalysesData CollectionData Management ResourcesData SecurityData SetData Storage and RetrievalDatabase Management SystemsDevelopmentDimensionsEducational workshopElementsEnsureEnvironmentEnvironmental HealthExperimental DesignsExposure toFAIR principlesFacultyFree Radical FormationFree RadicalsFunctional disorderFundingGoalsHealthHumanImageIndividualInformaticsInterdisciplinary StudyInvestigationKnowledgeLungMediationMethodologyMethodsMissionModelingPathway interactionsPersonsPreparationProtocols documentationPublic HealthPublicationsQuality ControlRandomizedReproducibilityResearchResearch DesignResearch MethodologyResearch PersonnelResearch Project GrantsResourcesSamplingScienceSecureServicesSignal Recognition ParticleSourceSpeedStandardizationStatistical Data InterpretationStatistical ModelsSuperfundSurvival AnalysisSystemTechnologyTestingTimeTimeLineTrainingWorkbasecomplex datacomputerized toolsdata acquisitiondata managementdata qualitydata reductiondata sharingdata visualizationdata warehousedesignexperienceexperimental studygraduate studentimprovedinnovationinvestigator trainingkinetic modellarge datasetslecturesmachine learning methodmembermultidimensional datamultidisciplinarynovelnovel strategiesopen datapreventprogramsquality assurancerespiratory healthsemiparametricskillssuccesstheoriestool
项目摘要
Project Summary/Abstract: Data Management and Analysis Core (DMAC)
The Data Management and Analysis Core (DMAC) is designed to enhance the LSU Superfund Research
Program's (SRP’s) understanding of how environmentally persistent free radicals (EPFRs) induce
pulmonary/cardiovascular dysfunction, and how to prevent formation, enhance decay, and limit exposure to
EPFRs, with the ultimate goal of improving human health and the environment. The five Projects and
supporting Cores in the LSU SRP present considerable data management and biostatistical challenges that
are crucial to the overall success of the Center. The DMAC’s Specific Aims are to (1) Develop and implement a
comprehensive data management plan for LSU SRP; (2) Develop and implement informatics solutions,
including data collection, distribution, and analysis tools and secure storage for data generated by LSU SRP
Projects and Cores; (3) Provide statistical expertise to SRP Projects and Cores; (4) Provide expertise in the
application and development of novel statistical models and methodology for analysis of complex
multidimensional data; (5) Provide educational initiatives and resources to serve a wide audience of graduate
students, postdoctoral researchers, and junior faculty. DMAC members possess the knowledge, skills, and
experiences necessary for tackling the complex multi-disciplinary issues to be addressed by the LSU SRP. We
will implement a comprehensive data management strategy leveraging recent advances within the LSU system
in high-speed computing and data distribution, along with stable and secure data collection, management, and
storage platforms for facilitating multi-disciplinary collaborations. Our Core is committed to promoting
transparent and reproducible research through the adoption of software, providing time-stamped version
control over documents, files, and code, such as the Open Science Framework and the workflowr R package
for statistical analysis. The DMAC biostatisticians will expand the toolsets available to the Superfund research
community by developing novel approaches and methods for understanding the relationship between EPFR
exposures and respiratory health effects using (multivariate) multiple mediation analysis, as well as the use of
reliable machine learning methods for dimension reduction in the investigation of the microstructural pathway
of EPFR formation and decay mechanisms, among other advancements. Last, the DMAC will develop and
promote a wide array of initiatives in various formats and venues for educating SRP investigators, postdoctoral
researchers, and graduate students on topics such as effective data management strategies, study design
principles, and on conducting transparent, valid, generalizable, and repeatable research.
项目摘要/摘要:数据管理和分析核心 (DMAC)
数据管理和分析核心 (DMAC) 旨在增强路易斯安那州立大学超级基金研究
项目 (SRP) 对环境持久性自由基 (EPFR) 如何诱发的理解
肺/心血管功能障碍,以及如何预防形成、促进腐烂和限制接触
EPFR 的最终目标是改善人类健康和环境。五个项目及
LSU SRP 中的支持核心提出了相当大的数据管理和生物统计挑战,
对中心的整体成功至关重要。 DMAC 的具体目标是 (1) 制定并实施
LSU SRP 综合数据管理计划; (2) 制定并实施信息学解决方案,
包括数据收集、分发和分析工具以及 LSU SRP 生成的数据的安全存储
项目和核心; (3) 为 SRP 项目和核心提供统计专业知识; (4) 提供专业知识
应用和开发新的统计模型和方法来分析复杂的
多维数据; (五)提供教育举措和资源,服务广大研究生
学生、博士后研究人员和初级教师。 DMAC 成员拥有知识、技能和
解决路易斯安那州立大学 SRP 所要解决的复杂的多学科问题所必需的经验。我们
将利用路易斯安那州立大学系统内的最新进展实施全面的数据管理策略
高速计算和数据分发,以及稳定、安全的数据采集、管理和处理
促进多学科合作的存储平台。我们的核心致力于促进
通过采用软件进行透明且可重复的研究,提供带时间戳的版本
控制文档、文件和代码,例如开放科学框架和工作流 R 包
用于统计分析。 DMAC 生物统计学家将扩展超级基金研究可用的工具集
社区通过开发新的途径和方法来理解 EPFR 之间的关系
使用(多变量)多重中介分析以及使用
在微观结构路径研究中用于降维的可靠机器学习方法
EPFR 形成和衰减机制等进展。最后,DMAC 将开发并
以各种形式和场所促进一系列广泛的举措,以教育 SRP 研究人员、博士后
研究人员和研究生的主题包括有效的数据管理策略、研究设计
原则,以及进行透明、有效、可推广和可重复的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Donald E Mercante其他文献
Differential requirement for MEK Partner 1 in DU145 prostate cancer cell migration
- DOI:
10.1186/1478-811x-7-26 - 发表时间:
2009-11-23 - 期刊:
- 影响因子:8.900
- 作者:
Electa R Park;Ashok K Pullikuth;Evangeline M Bailey;Donald E Mercante;Andrew D Catling - 通讯作者:
Andrew D Catling
Donald E Mercante的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Donald E Mercante', 18)}}的其他基金
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 13.33万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 13.33万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 13.33万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 13.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 13.33万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 13.33万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 13.33万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 13.33万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 13.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 13.33万 - 项目类别:
Research Fellowships














{{item.name}}会员




