Leveraging Machine Learning Techniques to Elucidate Risk for Callous-Unemotional Traits

利用机器学习技术来阐明冷酷无情特征的风险

基本信息

项目摘要

PROJECT SUMMARY/ABSTRACT Callous-unemotional (CU) traits, defined by low empathy, guilt, and prosociality, predict very high risk for childhood disruptive behavior disorders (DBD) and adverse adult outcomes, including violence, psychopathy, and crime. Standard treatments for DBDs are not as effective for children with CU traits. To inform personalized treatments for DBDs, a better understanding is needed about the specific risk factors for CU traits beginning in early childhood. Prior studies are limited by focusing only risk factors within a single risk domain or at a single age point. Thus, based on extant literature, we do not know which risk factors for DBDs and CU traits matter the most nor at what age they matter the most, including the possibility that the most influential mechanisms are characterized by interactions and nonlinear associations across domains and ages. Moreover, while prior studies have begun to identify risk factors for CU traits within the Cognitive and Negative Valence Systems of the Research Domain Criteria (RDoC), there is a major knowledge gap and fewer available measures focusing on links between the Social Processes domain and CU traits. To address these knowledge gaps, the objectives of this R21 proposal are to: (1) Implement a newly-developed behavioral coding paradigm that assesses affiliation (e.g., verbal and physical displays of affection) and social communication (e.g., eye-gaze, engagement, synchrony) during parent-child interactions; (2) Employ automated methods to identify objective linguistic markers of these domains; and (3) Use machine learning (ML) approaches to identify the domain-specific and age-specific precision risk factors that best predict CU traits across early childhood and middle childhood. We achieve these objectives using existing data from the Durham Child Health and Development Study (DCHDS) (n=206), which includes extensive observational, biological, and questionnaire report data on a diverse sample of children and their families assessed 7 times during early childhood (18, 24, 30, and 36 months) and middle childhood (5, 6, and 7 years), with parent-report measures CU traits at 7-8 years old. We will test child-, parent- , and context-level risk factors for CU traits across different units of analysis (i.e., biological, report, observed) and across two developmental stages (early childhood and middle childhood). This proposal is innovative because it will leverage computational linguistic methods and a new observational coding paradigm to assess affiliation and social communication, which have vital transdiagnostic implications for understanding risk for mental illness. The current proposal will also open new horizons by identifying age-specific and domain-specific risk factors, fundamentally advancing knowledge of how CU traits develop. The proposed R21 research is significant because it improves our ability to assess individual differences within the RDoC Social Processes domain, and will identify domain-specific and age-specific risk factors for CU traits, fundamentally advancing our understanding of the development of CU traits and our future ability to develop personalized and age-specific treatments for CU traits.
项目总结/摘要 无情的无情感(CU)特征,定义为低同情心,内疚和亲社会性,预测非常高的风险, 儿童期破坏性行为障碍(DBD)和不良的成人后果,包括暴力,精神病, 和犯罪DBD的标准治疗对具有CU特征的儿童不那么有效。通知个性化 治疗DBD,需要更好地了解CU特征的特定风险因素, 童年早期以往的研究局限于仅关注单一风险领域内的风险因素或单一风险因素。 年龄点。因此,根据现有的文献,我们不知道DBD和CU特征的哪些风险因素对 大多数人也不知道他们在什么年龄最重要,包括最有影响力的机制可能是 以跨领域和年龄的交互作用和非线性关联为特征。此外,虽然先前的研究 已经开始在认知和负价系统中识别CU特征的风险因素, 研究领域标准(RDoC),存在重大的知识差距,关注以下方面的可用措施较少 社会过程域和CU特质之间的联系。为了弥补这些知识差距, 这个R21建议是:(1)实施一个新开发的行为编码范式,评估归属 (e.g.,感情的口头和身体表现)和社会交流(例如,眼神交流,互动 (2)采用自动化方法来识别客观语言, 这些领域的标记;以及(3)使用机器学习(ML)方法来识别特定领域, 年龄特异性精确风险因素,最好地预测儿童早期和儿童中期的CU特征。我们 利用来自达勒姆儿童健康与发展研究(DCHDS)的现有数据实现这些目标 (n=206),其中包括广泛的观察,生物学和问卷报告数据的不同样本 儿童及其家庭在幼儿期(18、24、30和36个月)和中期评估了7次 儿童期(5岁、6岁和7岁),7-8岁时父母报告测量CU性状。我们会测试孩子,父母- ,以及跨不同分析单元的CU特征的背景水平风险因素(即,生物的、报告的、观察的) 并跨越两个发展阶段(幼儿期和幼儿期)。这一建议具有创新性 因为它将利用计算语言学方法和新的观察编码范式来评估 联系和社会沟通,这对理解风险有重要的transdiagnosis影响, 精神疾病目前的建议还将通过确定特定年龄和特定领域的 风险因素,从根本上推进CU性状如何发展的知识。R21研究的目的是 重要的是,它提高了我们评估RDoC社会过程中个体差异的能力 领域,并将确定特定领域和特定年龄的风险因素CU性状,从根本上推进我们的研究。 了解CU特征的发展以及我们未来发展个性化和特定年龄的能力 治疗CU性状。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas J Wagner其他文献

Nicholas J Wagner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas J Wagner', 18)}}的其他基金

Leveraging Machine Learning Techniques to Elucidate Risk for Callous-Unemotional Traits
利用机器学习技术来阐明冷酷无情特征的风险
  • 批准号:
    10369459
  • 财政年份:
    2022
  • 资助金额:
    $ 19.74万
  • 项目类别:
Risky Parenting and Temperament Pathways To Callous-Unemotional Traits In Early Childhood
危险的养育方式和导致儿童早期冷酷无情特征的气质途径
  • 批准号:
    10555195
  • 财政年份:
    2022
  • 资助金额:
    $ 19.74万
  • 项目类别:
Risky Parenting and Temperament Pathways To Callous-Unemotional Traits In Early Childhood
危险的养育方式和导致童年早期冷酷无情特征的气质途径
  • 批准号:
    10362481
  • 财政年份:
    2022
  • 资助金额:
    $ 19.74万
  • 项目类别:
Examining Neurophysiological Predictors of Treatment Response to a Multi-Component Early Intervention for Socially Inhibited Preschoolers
检查社交抑制学龄前儿童对多成分早期干预治疗反应的神经生理学预测因素
  • 批准号:
    10215144
  • 财政年份:
    2021
  • 资助金额:
    $ 19.74万
  • 项目类别:
Examining Neurophysiological Predictors of Treatment Response to a Multi-Component Early Intervention for Socially Inhibited Preschoolers
检查社交抑制学龄前儿童对多成分早期干预治疗反应的神经生理学预测因素
  • 批准号:
    10391565
  • 财政年份:
    2021
  • 资助金额:
    $ 19.74万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.74万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了