Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
基本信息
- 批准号:10599364
- 负责人:
- 金额:$ 58.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Animal ExperimentsAnimalsAntioxidantsAreaBehaviorBiologicalBiomimeticsBlood - brain barrier anatomyCellsCharacteristicsChargeChemistryChronicClinicalClinical TrialsComplexCorrosionDataDepositionDetectionDevelopmentDevice RemovalDevicesDimensionsElectrodesEventExhibitsFailureForeign BodiesFractureGene ExpressionGeometryGliosisHistologyHumanImplantIn VitroInflammationInflammatoryInflammatory ResponseInjectionsLiteratureLong-Term EffectsMeasurementMediatingMicroelectrodesMicrogliaModificationModulusMolecularMonitorNerve DegenerationNeuronsOxidative StressOxygenPathway interactionsPatternPenetrationPerformancePeriodicityPlayPopulationProtocols documentationRattusReactive Oxygen SpeciesResistanceRoentgen RaysRoleScanning Electron MicroscopySiliconSiteSourceSpectroscopy, Fourier Transform InfraredSpectrum AnalysisStructureSurfaceTechnologyTestingThickThinnessTimeTissuesUtahWorkclinically relevantcostdesignelectric impedanceextracellularflexibilityimplant coatingimplantationimprovedin vivoinfrared spectroscopyinnovationinsightmicrostimulationmimeticsneuralneuroinflammationnoveloxidative damageparylene Cpathogenpreservationpreventresponseside effectsilicon carbidesurface coatingvoltagewound healing
项目摘要
The Capadona group has identified the role of inflammation-mediated oxidative stress products in
microelectrode-initiated neuroinflammation to be the most comprehensive source contributing to poor
electrode reliability. In order to realize the potential of any application using intracortical microelectrodes,
we must minimize the degradative side effects caused by oxidative stress products, without inhibiting the
beneficial wound healing aspects of inflammation.
We have used a variety of antioxidant treatments to demonstrate a reduction in intracortical
microelectrode-mediated oxidative stress and preserve neuron viability. Our most promising strategy to
date for improving intracortical recording reliability is our biomimetic antioxidative coating. Our initial
efforts focused on planar silicon substrates for ease of characterization, cost, and their recent popularity
in the literature. Our preliminary data suggest that our novel antioxidative-coated microelectrodes reduce
the initial inflammatory response, preserve neuron populations, and improve initial recording quality.
The initial mimetic coating is not a comprehensive antioxidative strategy. Oxidative stress can be
initiated by either a damage-associated molecular patterns (DAMPs) or pathogen-associated molecular
patterns (PAMPs) pathway. In the proposed study, we will specifically investigate the effect that
antioxidant-coated microelectrodes have on the stability of stimulation and neural recordings. Our
electrodes will be coated with antioxidants that target either PAMP, DAMP, or both PAMP and DAMP
pathways, in order to develop a comprehensive, but not overly suppressive approach.
In order to be applicable to on-going clinical trials, our coating must also be translatable to the only
penetrating recording microelectrode approved by the US FDA. Therefore, we have shown that these
antioxidants can be attached to Parylene C. The innovation of this proposal is in the application of a
platform approach to surface modify Parylene C coated Blackrock Arrays, to effectively minimize two of
the leading causes of intracortical microelectrode failure: materials damage and biological damage.
On a more fundamental level, this work will also examine how varying the dimensions of intracortical
microelectrodes impacts both ROS and the tissue response. Extremely thin devices, regardless of
inherent Young's modulus of the constituent material, become very flexible. Due to its high fracture
resistance, we will leverage amorphous silicon carbide to create microelectrode probes with small
thicknesses. Such probes will enable us to test the hypothesis that oxidative stress and
neuroinflammation are proportional to the device dimension and resulting rigidity. We will further
demonstrate that the associated oxidative stress and neuroinflammation generated from larger more rigid
devices can be subdued by coating the implant with antioxidants.
Capadona小组已经确定了炎症介导的氧化应激产物在
微电极引发的神经炎症是导致不良反应的最全面的来源。
电极可靠性为了实现使用皮质内微电极的任何应用的潜力,
我们必须最大限度地减少氧化应激产物引起的降解副作用,而不抑制
有利于伤口愈合方面的炎症。
我们已经使用了各种抗氧化剂治疗,以证明减少皮质内
微电极介导的氧化应激和保护神经元活力。我们最有希望的策略
提高皮质内记录可靠性的最新数据是我们的仿生抗氧化涂层。我们最初
努力集中在平面硅衬底上,以便于表征、成本和它们最近的流行
在文献中。我们的初步数据表明,我们的新型抗氧化涂层微电极减少
初始炎症反应,保护神经元群体,并提高初始记录质量。
最初的模拟涂层不是一个全面的抗氧化策略。氧化应激可以是
由损伤相关分子模式(DAMP)或病原体相关分子模式(DAMPs)启动
模式(PAMPs)通路。在拟议的研究中,我们将专门研究
抗氧化剂涂层微电极对刺激和神经记录的稳定性有影响。我们
电极将涂有抗氧化剂,抗氧化剂针对PAMP、DAMP或PAMP和DAMP两者
途径,以制定一个全面的,但不是过度抑制的方法。
为了适用于正在进行的临床试验,我们的涂层还必须可转换为唯一的
美国FDA批准的穿透记录微电极。因此,我们已经表明,这些
抗氧化剂可以连接到聚对二甲苯C上。该提案的创新之处在于应用了一种
表面改性聚对二甲苯C涂覆的Blackrock阵列的平台方法,以有效地最小化两个
皮质内微电极失效的主要原因是材料损伤和生物学损伤。
在更基本的层面上,这项工作还将研究如何改变皮质内的尺寸,
微电极影响ROS和组织反应。超薄设备,无论
组成材料的固有杨氏模量,变得非常灵活。由于其高度断裂
电阻,我们将利用无定形碳化硅来制造具有小
厚度。这种探针将使我们能够测试氧化应激和
神经炎症与装置尺寸和产生的刚性成比例。我们将进一步
证明了相关的氧化应激和神经炎症产生于更大的更刚性的
可以通过用抗氧化剂涂覆植入物来抑制装置。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey R Capadona其他文献
Jeffrey R Capadona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10418649 - 财政年份:2020
- 资助金额:
$ 58.11万 - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10642761 - 财政年份:2020
- 资助金额:
$ 58.11万 - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10217285 - 财政年份:2020
- 资助金额:
$ 58.11万 - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10356848 - 财政年份:2019
- 资助金额:
$ 58.11万 - 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
- 批准号:
10561933 - 财政年份:2019
- 资助金额:
$ 58.11万 - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10840055 - 财政年份:2019
- 资助金额:
$ 58.11万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 58.11万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 58.11万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 58.11万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 58.11万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 58.11万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)