RR&D Research Career Scientist Award Application

RR

基本信息

项目摘要

Overall goals: My laboratory is dedicated to understanding and mitigating the neuroinflammatory response to implanted devices within the central nervous system. Such devices range from ventricular shunts to various types of stimulating and recording electrodes. Neural devices range in material type, size, architecture, function, and placement. Regardless of any of these variables, the neuroinflammatory response to the implant plays a significant role on the integrity of the healthy tissue and the longevity of device performance. A progressive decline in recordings quality after implantation has been known for over 40 years. Unfortunately, recording instability is still a commonly documented problem. A major portion of my work has focused on studying various aspects of intracortical microelectrode performance, and pursuing both materials-based and therapeutic-based methods to mitigate the inflammatory-mediated intracortical microelectrode failure mechanisms. Areas include: 1) Role of tissue/device mechanical mismatch on microelectrode failure. I have developed biologically- inspired, mechanically-dynamic intracortical microelectrodes based on their polymer nanocomposite material. Enabled by the novel material system, I am able to independently examine and manipulate device modulus, geometry, and drug-eluting capabilities. Over the past ten years, my team has successfully demonstrated that mechanically-dynamic polymer-based intracortical microelectrodes are stiff enough to be inserted into the brain, become compliant to reduce micro-motion and inhibit late-stage neuroinflammatory responses, and can be fabricated into functional intracortical microelectrodes capable of recording from neural structures in live animals. We have also recently demonstrated that mechanically-dynamic polymer-based intracortical microelectrodes can be utilized to deliver anti-inflammatory therapeutics to further mitigate implant-associated inflammation. As part of our ongoing Department of Defense CDMRP award, we are collaboratively working to characterize the relationship between microelectrode-induced tissue strain and recording performance. 2) Role of oxidative stress on microelectrode failure. Oxidative pathways have been implicated in both neurodegeneration and corrosive damage to both the metallic and insulating materials of current intracortical microelectrode technologies. Thus, approaches to mitigate or attenuate the deleterious effects of oxidative inflammatory products are of significant importance. We have demonstrated that several antioxidants can be delivered systemically or locally to temporally mitigate neuronal damage and loss, and that bioactive coatings with mimetic anti-oxidative enzymes can prolong neuroprotection. Further, unpublished results have also established a correlation between osmotically delivered antioxidant therapy within the brain and improved intracortical microelectrode recording performance. Over the next four years, my new VA Merit Review will explore the connection between surface-immobilize biomimetic antioxidative therapies and intracortical microelectrode recording performance. 3) Role of specific immunity pathways microelectrode failure. Few direct connections have been demonstrated between the neuroinflammatory response to intracortical microelectrodes and device performance. We have identified a possible connection between each of these studies to be in large part due to innate immunity-specific toll-like receptor pathways of resident microglia or infiltrating macrophages. Further, we have established that inhibiting the innate immunity co-receptor cluster of differentiation 14 on myeloid cells and not resident microglia reduced blood-brain barrier permeability and increased neuroprotection and intracortical microelectrode recording performance. My laboratory has identified a precise pathway that facilitates stability of the microelectrode-tissue interface, which may lead to new treatment regimens to enable long-term performance. Ongoing work is supported by the NIH, with interest from private corporate sources.
总体目标:我的实验室致力于了解和减轻神经炎性反应 在中枢神经系统内植入装置。这种装置的范围从脑室分流到各种 刺激电极和记录电极的类型。神经设备在材料类型、大小、结构、功能、 和位置。不管这些变量中的任何一个,对植入物的神经炎性反应起到了 对健康组织的完整性和设备性能的长寿具有重要作用。进步者 植入后录音质量下降已有40多年的历史了。不幸的是,录制 不稳定仍然是一个常见的记录在案的问题。我的大部分工作都集中在研究各种 皮质内微电极性能的方面,并追求基于材料和基于治疗的 方法减轻炎症介导的皮质内微电极失效机制。这些领域包括: 1)组织/装置机械失配在微电极失效中的作用。我在生物学上发展了- 基于其聚合物纳米复合材料的激励、机械动态皮质内微电极。 在新型材料系统的支持下,我能够独立地检查和操纵器件的模数, 几何形状和药物洗脱能力。在过去的十年里,我的团队成功地证明了 基于机械动态聚合物的皮质内微电极足够坚硬,可以插入大脑, 变得顺从以减少微运动并抑制晚期神经炎性反应,并且可以 制成功能性皮质内微电极,能够从活体动物的神经结构中进行记录。 我们最近还展示了基于机械动力学聚合物的皮质内微电极 可用于提供抗炎治疗药物,以进一步减轻种植体相关的炎症。AS 作为我们正在进行的国防部CDMRP奖的一部分,我们正在协作工作,以确定 微电极诱发的组织应变与记录性能的关系。 2)氧化应激在微电极失效中的作用。氧化途径被认为与这两个事件有关 电流皮质内金属和绝缘材料的神经退变和腐蚀损伤 微电极技术。因此,减轻或减弱氧化有害影响的方法 炎症性产品具有重要意义。我们已经证明了几种抗氧化剂可以 系统地或局部地输送以暂时减轻神经元损伤和丢失,且生物活性涂层 具有模拟抗氧化酶,可延长神经保护。此外,未发表的结果也 建立了大脑内渗透传递的抗氧化剂疗法与改善的 皮质内微电极记录性能。在接下来的四年里,我的新退伍军人功绩评估将 探索表面固定化仿生抗氧化疗法与皮质内的联系 微电极记录性能。 3)特异性免疫通路在微电极失效中的作用。很少有直接连接是 皮层内微电极的神经炎性反应与装置之间的关系 性能。我们已经确定了这些研究之间可能的联系,这在很大程度上是因为 固有免疫-常驻小胶质细胞或浸润性巨噬细胞的Toll样受体通路。此外,我们 已经确定抑制髓系细胞上的天然免疫共受体分化簇14和 非常驻小胶质细胞降低血脑屏障通透性,增强神经保护和皮质内 微电极记录性能。我的实验室已经确定了一条精确的途径,有助于稳定 微电极-组织界面,这可能导致新的治疗方案,以实现长期性能。 正在进行的工作得到了美国国立卫生研究院的支持,私营企业对此感兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeffrey R Capadona其他文献

Jeffrey R Capadona的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金

Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10418649
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10642761
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
  • 批准号:
    10217285
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10060750
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
RR&D Research Career Scientist Award Application
RR
  • 批准号:
    10311087
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
  • 批准号:
    10599364
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10356848
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
  • 批准号:
    10561933
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
  • 批准号:
    10840055
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Senior Research Career Scientist
高级研究职业科学家
  • 批准号:
    10749218
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了