RR&D Research Career Scientist Award Application
RR
基本信息
- 批准号:10311087
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAffectAmericanAmputeesAmyotrophic Lateral SclerosisAnimal ModelAnimalsAnti-Inflammatory AgentsAntioxidantsArchitectureAreaAttenuatedAwardBathingBehaviorBiocompatible MaterialsBiologicalBiomimeticsBrainCaregiversCellsCervicalCervical spinal cord injuryChemistryChronicClinicalComputersCorrosivesCoupledDeep Brain StimulationDepartment of DefenseDetectionDevicesDisabled PersonsDiseaseElectrodesEndotoxinsEngineeringEnzymesFailureGeometryGoalsHealthcareImmobilizationImmunityImplantIndividualInflammationInflammatoryInflammatory InfiltrateInjuryInstitutionInvestigationJournalsLaboratoriesLeadLife ExpectancyLimb ProsthesisLiteratureLongevityLower ExtremityManuscriptsMechanicsMediatingMethodsMicroelectrodesMicrogliaMilitary PersonnelMissionModelingModulusMotionMovementMuscleMyeloid CellsNamesNanotechnologyNatural ImmunityNatureNerve DegenerationNeuraxisNeuronsNeurosciencesOutcomeOxidative StressParalysedPathway interactionsPatientsPeer ReviewPerformancePersonsPharmaceutical PreparationsPlayPolymersPrivatizationProcessPublishingQuadriplegiaQuality of lifeRecoveryRehabilitation therapyReportingResearchResearch PersonnelResolutionRoboticsRoleScienceScientistSeizuresSelf-Help DevicesSeminalServicesShunt DeviceSignal TransductionSourceSpecificitySpinal cord injurySpinal cord injury patientsSterilityStrokeStructureSurfaceSystemTechnologyTherapeuticThinkingTimeTissuesToll-Like Receptor PathwayTreatment ProtocolsUnited States National Institutes of HealthUpper ExtremityVentricularVeteransVolitionWorkantioxidant therapyarmarm movementbasebiomacromoleculeblood-brain barrier permeabilizationbrain machine interfacecareerclinical applicationcommunication devicedisabilityexperiencefallsfeedingfunctional electrical stimulationimplantable deviceimplantationimprovedindexinginjuredinterestlimb lossmacrophagematerials sciencemechanical devicemetallicitymimeticsnanocompositenervous system disorderneuroinflammationneuroprotectionneurotransmissionnovelreceptorrelating to nervous systemresponserestoration
项目摘要
Overall goals: My laboratory is dedicated to understanding and mitigating the neuroinflammatory response to
implanted devices within the central nervous system. Such devices range from ventricular shunts to various
types of stimulating and recording electrodes. Neural devices range in material type, size, architecture, function,
and placement. Regardless of any of these variables, the neuroinflammatory response to the implant plays a
significant role on the integrity of the healthy tissue and the longevity of device performance. A progressive
decline in recordings quality after implantation has been known for over 40 years. Unfortunately, recording
instability is still a commonly documented problem. A major portion of my work has focused on studying various
aspects of intracortical microelectrode performance, and pursuing both materials-based and therapeutic-based
methods to mitigate the inflammatory-mediated intracortical microelectrode failure mechanisms. Areas include:
1) Role of tissue/device mechanical mismatch on microelectrode failure. I have developed biologically-
inspired, mechanically-dynamic intracortical microelectrodes based on their polymer nanocomposite material.
Enabled by the novel material system, I am able to independently examine and manipulate device modulus,
geometry, and drug-eluting capabilities. Over the past ten years, my team has successfully demonstrated that
mechanically-dynamic polymer-based intracortical microelectrodes are stiff enough to be inserted into the brain,
become compliant to reduce micro-motion and inhibit late-stage neuroinflammatory responses, and can be
fabricated into functional intracortical microelectrodes capable of recording from neural structures in live animals.
We have also recently demonstrated that mechanically-dynamic polymer-based intracortical microelectrodes
can be utilized to deliver anti-inflammatory therapeutics to further mitigate implant-associated inflammation. As
part of our ongoing Department of Defense CDMRP award, we are collaboratively working to characterize the
relationship between microelectrode-induced tissue strain and recording performance.
2) Role of oxidative stress on microelectrode failure. Oxidative pathways have been implicated in both
neurodegeneration and corrosive damage to both the metallic and insulating materials of current intracortical
microelectrode technologies. Thus, approaches to mitigate or attenuate the deleterious effects of oxidative
inflammatory products are of significant importance. We have demonstrated that several antioxidants can be
delivered systemically or locally to temporally mitigate neuronal damage and loss, and that bioactive coatings
with mimetic anti-oxidative enzymes can prolong neuroprotection. Further, unpublished results have also
established a correlation between osmotically delivered antioxidant therapy within the brain and improved
intracortical microelectrode recording performance. Over the next four years, my new VA Merit Review will
explore the connection between surface-immobilize biomimetic antioxidative therapies and intracortical
microelectrode recording performance.
3) Role of specific immunity pathways microelectrode failure. Few direct connections have been
demonstrated between the neuroinflammatory response to intracortical microelectrodes and device
performance. We have identified a possible connection between each of these studies to be in large part due to
innate immunity-specific toll-like receptor pathways of resident microglia or infiltrating macrophages. Further, we
have established that inhibiting the innate immunity co-receptor cluster of differentiation 14 on myeloid cells and
not resident microglia reduced blood-brain barrier permeability and increased neuroprotection and intracortical
microelectrode recording performance. My laboratory has identified a precise pathway that facilitates stability of
the microelectrode-tissue interface, which may lead to new treatment regimens to enable long-term performance.
Ongoing work is supported by the NIH, with interest from private corporate sources.
总体目标:我的实验室致力于理解和减轻神经炎症反应
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey R Capadona其他文献
Jeffrey R Capadona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10418649 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10642761 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10217285 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
- 批准号:
10599364 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10356848 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
- 批准号:
10561933 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10840055 - 财政年份:2019
- 资助金额:
-- - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship