Characterizing and mitigating the role of oxidative damage in microelectrode failure
表征和减轻氧化损伤在微电极故障中的作用
基本信息
- 批准号:10561933
- 负责人:
- 金额:$ 11.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AntioxidantsBiologicalBiomimeticsChronicClinicalClinical TrialsDataDevicesDimensionsElectrodesFailureFractureInflammationInflammatoryInflammatory ResponseLiteratureMediatingMicroelectrodesModulusMolecularNeuronsOxidative StressPathway interactionsPatternPopulationResistanceRoleSiliconSourceSurfaceTestingThickThinnessTissuesWorkcostflexibilityimplant coatingimprovedinnovationmimeticsneuroinflammationnoveloxidative damageparylene Cpathogenpreservationrelating to nervous systemresponseside effectsilicon carbidewound healing
项目摘要
The Capadona group has identified the role of inflammation-mediated oxidative stress products in
microelectrode-initiated neuroinflammation to be the most comprehensive source contributing to poor
electrode reliability. In order to realize the potential of any application using intracortical microelectrodes,
we must minimize the degradative side effects caused by oxidative stress products, without inhibiting the
beneficial wound healing aspects of inflammation.
We have used a variety of antioxidant treatments to demonstrate a reduction in intracortical
microelectrode-mediated oxidative stress and preserve neuron viability. Our most promising strategy to
date for improving intracortical recording reliability is our biomimetic antioxidative coating. Our initial
efforts focused on planar silicon substrates for ease of characterization, cost, and their recent popularity
in the literature. Our preliminary data suggest that our novel antioxidative-coated microelectrodes reduce
the initial inflammatory response, preserve neuron populations, and improve initial recording quality.
The initial mimetic coating is not a comprehensive antioxidative strategy. Oxidative stress can be
initiated by either a damage-associated molecular patterns (DAMPs) or pathogen-associated molecular
patterns (PAMPs) pathway. In the proposed study, we will specifically investigate the effect that
antioxidant-coated microelectrodes have on the stability of stimulation and neural recordings. Our
electrodes will be coated with antioxidants that target either PAMP, DAMP, or both PAMP and DAMP
pathways, in order to develop a comprehensive, but not overly suppressive approach.
In order to be applicable to on-going clinical trials, our coating must also be translatable to the only
penetrating recording microelectrode approved by the US FDA. Therefore, we have shown that these
antioxidants can be attached to Parylene C. The innovation of this proposal is in the application of a
platform approach to surface modify Parylene C coated Blackrock Arrays, to effectively minimize two of
the leading causes of intracortical microelectrode failure: materials damage and biological damage.
On a more fundamental level, this work will also examine how varying the dimensions of intracortical
microelectrodes impacts both ROS and the tissue response. Extremely thin devices, regardless of
inherent Young's modulus of the constituent material, become very flexible. Due to its high fracture
resistance, we will leverage amorphous silicon carbide to create microelectrode probes with small
thicknesses. Such probes will enable us to test the hypothesis that oxidative stress and
neuroinflammation are proportional to the device dimension and resulting rigidity. We will further
demonstrate that the associated oxidative stress and neuroinflammation generated from larger more rigid
devices can be subdued by coating the implant with antioxidants.
Capadona研究小组已经确定了炎症介导的氧化应激产物在
微电极引发的神经炎症是导致贫困的最全面的来源
电极可靠性。为了实现使用皮质内微电极的任何应用的潜力,
我们必须最大限度地减少氧化应激产物造成的降解性副作用,而不是抑制
有利于伤口愈合的炎症方面。
我们已经使用了各种抗氧化剂治疗来证明皮质内的
微电极介导的氧化应激和保存神经元活性。我们最有希望的战略是
提高皮质内记录可靠性的日期是我们的仿生抗氧化涂层。我们最初的
努力集中在平面硅衬底,以便于表征,成本和它们最近的流行
在文学作品中。我们的初步数据表明,我们的新型抗氧化剂涂层微电极可以减少
初始炎症反应,保存神经元数量,提高初始记录质量。
最初的模拟涂层并不是一个全面的抗氧化策略。氧化应激可以是
由损伤相关分子模式(DAMPS)或病原体相关分子启动
模式(PAMP)途径。在拟议的研究中,我们将具体调查
涂有抗氧化剂的微电极对刺激和神经记录的稳定性有影响。我们的
电极上将涂有针对PAMP、DAMP或同时针对PAMP和DAMP的抗氧化剂
路径,以便制定一种全面的、但不过度压制的方法。
为了适用于正在进行的临床试验,我们的涂层还必须可翻译为仅
美国FDA批准的穿透式记录微电极。因此,我们已经证明了这些
抗氧化剂可以附着在对二甲苯C上。这一建议的创新之处在于应用了一种
平台方法表面改性对二甲苯C涂层黑岩阵列,有效地减少两个
皮质内微电极失效的主要原因:材料损伤和生物损伤。
在更基本的层面上,这项工作还将研究如何改变大脑皮质内的维度
微电极同时影响ROS和组织反应。超薄的设备,无论
材料固有的杨氏模数,变得非常灵活。由于它的高度断裂
电阻,我们将利用非晶态碳化硅制造具有小尺寸的微电极探头
厚度。这样的探针将使我们能够测试氧化应激和
神经炎症与装置的尺寸和由此产生的僵硬成正比。我们将进一步
证明相关的氧化应激和神经炎症是由更大更僵硬的
通过在植入物上涂上抗氧化剂,可以使设备变得柔和。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey R Capadona其他文献
Jeffrey R Capadona的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey R Capadona', 18)}}的其他基金
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10418649 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10642761 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Optimizing Delivery of a Known Therapeutic Agent, Dexamethasone, to Improve Microelectrode Recording Performance
优化已知治疗剂地塞米松的输送,以提高微电极记录性能
- 批准号:
10217285 - 财政年份:2020
- 资助金额:
$ 11.42万 - 项目类别:
Characterizing and Mitigating the Role of Oxidative Damage in Microelectrode Failure
表征和减轻氧化损伤在微电极失效中的作用
- 批准号:
10599364 - 财政年份:2019
- 资助金额:
$ 11.42万 - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10356848 - 财政年份:2019
- 资助金额:
$ 11.42万 - 项目类别:
Hybrid Drug-Eluting Microfluidic Neural Probe for Chronic Drug Infusion
用于慢性药物输注的混合药物洗脱微流控神经探针
- 批准号:
10840055 - 财政年份:2019
- 资助金额:
$ 11.42万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 11.42万 - 项目类别:
Standard Grant