Probing Glycan Polymer Patterns on Bacterial Cell Surfaces
探测细菌细胞表面的聚糖聚合物模式
基本信息
- 批准号:10607380
- 负责人:
- 金额:$ 15.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibioticsAreaBacteriaBacterial PolysaccharidesBacterial ProteinsBar CodesBiochemistryBiologyCause of DeathCell surfaceChemicalsDevelopmentEnvironmentEpitopesGram-Negative BacteriaGram-Negative Bacterial InfectionsHumanInfectionLabelLaboratoriesMediatingMembraneMicrobiologyMolecularMolecular ChaperonesMonosaccharidesO AntigensOligosaccharidesOrganic ChemistryOrganismOutcomePathway interactionsPatternPlanetsPolymersPolysaccharidesPredispositionProductionProteinsPublic HealthReagentRouteSkinStructureSurfaceWorkbasebiochemical toolscell envelopeglycosyltransferaseimprovedinsightinterdisciplinary approachmolecular recognitionnovel diagnosticsnovel strategiespathogenpathogenic bacteriaprogramsprotein protein interactionsmall moleculesugarsymbiont
项目摘要
Project Summary/Abstract
Our planet is inhabited by trillions of bacteria that live inside and outside of humans. The “skin”, or
surface, of bacteria is called the cell envelope, and functions to separate us from them. Although some bacteria
are symbionts, infection by pathogenic bacteria is still a major cause of death worldwide. While Gram-negative
bacteria contain a protective outer membrane layer absent in most Gram-positives, almost all bacteria contain
polymers composed of unique patterns of glycans that extend from the cell surface. Bacterial surface sugar
polymers, or exo-polysaccharides, act as molecular barcodes that distinguish different strains of bacteria within
a single species. Many bacterial exo-polysaccharides contain rare sugars, which are monosaccharides that are
absent in other organisms, including humans. While exo-polysaccharides are necessary for host infection, we
still lack an understanding of how rare sugar-containing glycan polymers are assembled, recognized, and enable
survival in the host.
My laboratory seeks to generate chemical and biochemical tools to study bacterial protein and glycan
pathways that enable survival in different environments. Our main areas of focus are: (1) development of small
molecule regulators of bacterial chaperone function; (2) manipulation of cell surface sugar patterns to selectively
label and disable bacteria. This proposal focuses on the latter program, in which we identify rare saccharide
subunits that are unique to Gram-negative cell surface polymers called O-antigens, and represent key epitopes
that mediate interactions with hosts and susceptibility to antibiotics. Over the next five years, we will address the
following questions: (1) Can we improve chemoenzymatic routes to rare sugar precursor substrates? (2) How
do glycosyltransferases recognize rare sugar substrates to build O-antigens? (3) Are O-antigen
glycosyltransferases regulated via protein-protein interactions? (4) What host protein structural motifs are
involved in bacterial rare sugar recognition? (5) Can we identify new host proteins involved in bacterial
recognition? To answer these questions, we will use a multidisciplinary approach, involving a combination of
organic chemistry, chemical biology, biochemistry, microbiology and sequencing-based analyses. This work will
significantly expand our understanding of cellular mechanisms underlying bacterial polysaccharide synthesis,
and will teach us how humans recognize foreign sugars.
Relevance to public health: In addition to providing fundamental insight into the production of bacterial factors
that are important for infection, the results of this proposal will inform novel strategies to disable hard-to-treat
Gram-negative infections by interference of essential host-pathogen interactions, as well as biomolecular
reagents to recognize bacterial oligosaccharide structures for new diagnostics.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tania Lupoli其他文献
Tania Lupoli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tania Lupoli', 18)}}的其他基金
MIRA: Probing Glycan Polymer Patterns on Bacterial Cell Surfaces
MIRA:探测细菌细胞表面的聚糖聚合物模式
- 批准号:
10275911 - 财政年份:2021
- 资助金额:
$ 15.15万 - 项目类别:
MIRA: Probing Glycan Polymer Patterns on Bacterial Cell Surfaces
MIRA:探测细菌细胞表面的聚糖聚合物模式
- 批准号:
10668330 - 财政年份:2021
- 资助金额:
$ 15.15万 - 项目类别:
MIRA: Probing Glycan Polymer Patterns on Bacterial Cell Surfaces
MIRA:探测细菌细胞表面的聚糖聚合物模式
- 批准号:
10459500 - 财政年份:2021
- 资助金额:
$ 15.15万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 15.15万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 15.15万 - 项目类别:
Studentship














{{item.name}}会员




