Structural basis of integral membrane enzyme function
完整膜酶功能的结构基础
基本信息
- 批准号:10609459
- 负责人:
- 金额:$ 43.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAlcoholsAnabolismAnimal ModelAttentionBiochemicalBiochemical ReactionBiochemistryCatalysisCell WallCell physiologyCellsCellular MembraneCellular StructuresChargeComplexCouplingCryoelectron MicroscopyDataEnvironmentEnzyme InteractionEnzymesEthanolaminesFamilyGDPmannose dolicholphosphate mannosyltransferaseGenerationsGlycerophospholipidsGram-Negative BacteriaHydrophobicityKnowledgeLigandsLigaseLipid ALipid BilayersLipidsLipopolysaccharidesMediatingMembraneMembrane ProteinsModificationMolecularO AntigensPathway interactionsPhasePhosphotransferasesPlayProcessProductionProtein GlycosylationProteinsReactionRoleSignal TransductionSpecificityStructureSubstrate InteractionSubstrate SpecificitySystemTechniquesTransferaseX-Ray Crystallographyaqueouschemical propertychemical reactionchemical synthesisenzyme structureglycosylationglycosyltransferasehuman diseasehydrophilicitylipophilicitynanodiskparticleprotein functionprotein-O-mannosyltransferase 1reconstitutionstructural biologysugartherapeutic targettool
项目摘要
ABSTRACT
Lipids are synthesized and modified primarily by integral membrane enzymes embedded, at least in part, in the
bilayer itself. These enzymatic reactions are essential not only for the biosynthesis of all cellular membranes,
but also for lipid-mediated signaling and for the export of soluble molecules as lipid conjugates to outer cellular
compartments for a wide array of basic cellular functions, which include protein and lipid glycosylation, and
modifications of the chemical properties of outer membranes as an adaptation of the cell to a changing
environment. However, despite the advances in our understanding of how membrane proteins function, our
knowledge of how membrane enzymes interact with their lipidic substrates at a molecular level has been
scarce, also hindered by the hydrophobicity engendered by the lipid constituents themselves.
The main focus of my lab is to use structural biology to investigate at a molecular level the interactions
between membrane enzymes and their lipidic substrates. Our structures will produce testable functional
hypotheses on how hydrophobic and hydrophilic substrates are brought into apposition for catalysis to occur,
on how chemical reactions involving charged groups and an aqueous environment can adapt to process
lipophilic molecules, on what are the molecular determinants of substrate specificity for hydrophobic ligands,
and on the role that the membrane itself plays in these processes. We expect common principles on the
interactions between, membrane, membrane enzymes, and lipidic substrates to emerge from our studies.
We have focused our initial attention on glycerophospholipid biosynthesis as catalyzed by the CDP-alcohol
phosphotransferase family of enzymes, and on the enzymatic coupling and uncoupling of sugars to
polyisoprenyl carriers by the polyisoprenyl glycosyltransferase GtrB and the aminoarabinose transferase ArnT,
respectively. We will continue in these directions by obtaining structures of these enzymes in complex with
their lipidic ligands in mimics of the lipid bilayer environment, either by x-ray crystallography in lipidic cubic
phase (LCP), or by single-particle cryo-electron microscopy (cryo-EM) in lipid-filled nanodiscs. We will also
expand in new directions, related one with the other by the synthesis and modification of the
lipopolysaccharide (LPS) component of Gram-negative bacteria (O-antigen ligase WaaL, ethanolamine
transferase Ept A, and ArnT), by the coupling of activated sugars to polyisoprenyl carriers (GtrB and dolichol-
phosphate mannose synthase, DPMS), and by the uncoupling of sugar-polyisoprenyl conjugates to generate
mature LPS (WaaL), to modify lipid A (ArnT), or to glycosylate proteins (Pomt1/2).
To succeed, we will combine our expertise in membrane protein production, biochemistry, and structural
biology, to that of our collaborators that are leaders in their respective fields, ranging from chemical synthesis
of sugar-lipid conjugates, to biochemical analysis of LPS, to functional analyses of membrane proteins in
reconstituted systems or animal models, to the generation of tools to allow cryo-EM analysis of small proteins.
摘要
脂质的合成和修饰主要是由至少部分地嵌入在膜中的膜酶来完成的。
bilayer本身这些酶促反应不仅对于所有细胞膜的生物合成是必需的,
而且还用于脂质介导的信号传导和用于将可溶性分子作为脂质缀合物输出到外细胞
用于广泛的基本细胞功能的区室,包括蛋白质和脂质糖基化,以及
外膜的化学性质的改变,作为细胞对变化的环境的适应。
环境然而,尽管我们对膜蛋白功能的理解有了进步,
关于膜酶如何在分子水平上与它们的底物相互作用的知识,
稀缺,也受到脂质成分本身产生的疏水性的阻碍。
我实验室的主要重点是利用结构生物学在分子水平上研究
在膜酶和它们的底物之间。我们的结构将产生可测试的功能
关于疏水性和亲水性基质如何并置以发生催化作用的假设,
涉及带电基团和水环境的化学反应如何适应过程
亲脂性分子,疏水配体的底物特异性的分子决定因素是什么,
以及膜本身在这些过程中所起的作用。我们期待共同的原则,
之间的相互作用,膜,膜酶,和生物底物从我们的研究中出现。
我们最初的注意力集中在CDP-醇催化的甘油磷脂生物合成上
磷酸转移酶家族的酶,以及糖的酶促偶联和解偶联,
通过聚异戊二烯基糖基转移酶GtrB和氨基阿拉伯糖转移酶ArnT将聚异戊二烯基载体,
分别我们将通过获得这些酶的结构来继续这些方向,
在模拟脂质双层环境中,通过X射线晶体学在双折射立方晶体中,
相(LCP),或通过脂质填充的纳米盘中的单颗粒低温电子显微镜(cryo-EM)。我们还将
在新的方向上扩展,通过合成和修改彼此相关,
革兰氏阴性菌的脂多糖(LPS)组分(O-抗原连接酶WaaL,乙醇胺
转移酶Ept A和ArnT),通过将活化的糖偶联到聚异戊二烯基载体(GtrB和多萜醇-
磷酸甘露糖合酶,DPMS),并通过糖-聚异戊二烯基缀合物的解偶联,
成熟LPS(WaaL),修饰脂质A(ArnT),或糖基化蛋白(Pomt 1/2)。
为了取得成功,我们将联合收割机结合我们在膜蛋白生产、生物化学和结构方面的专业知识,
生物学,我们的合作者是各自领域的领导者,从化学合成
的糖-脂质缀合物,LPS的生物化学分析,细胞膜蛋白的功能分析,
重组系统或动物模型,以产生工具,允许冷冻EM分析小蛋白质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Filippo Mancia其他文献
Filippo Mancia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Filippo Mancia', 18)}}的其他基金
Molecular mechanism of omega-3 fatty acid transport into the brain
omega-3脂肪酸转运至大脑的分子机制
- 批准号:
10307571 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Molecular mechanism of omega-3 fatty acid transport into the brain
omega-3脂肪酸转运至大脑的分子机制
- 批准号:
10156975 - 财政年份:2020
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of integral membrane enzyme function
完整膜酶功能的结构基础
- 批准号:
9921455 - 财政年份:2019
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of integral membrane enzyme function
完整膜酶功能的结构基础
- 批准号:
10582102 - 财政年份:2019
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of integral membrane enzyme function
完整膜酶功能的结构基础
- 批准号:
10393522 - 财政年份:2019
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of receptor-mediated cellular vitamin A uptake
受体介导的细胞维生素 A 摄取的结构基础
- 批准号:
9898381 - 财政年份:2017
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of phosphoinositide biosynthesis in Mycobacterium tuberculosis
结核分枝杆菌中磷酸肌醇生物合成的结构基础
- 批准号:
9100634 - 财政年份:2015
- 资助金额:
$ 43.35万 - 项目类别:
Structural basis of phosphoinositide biosynthesis in Mycobacterium tuberculosis
结核分枝杆菌中磷酸肌醇生物合成的结构基础
- 批准号:
8953854 - 财政年份:2015
- 资助金额:
$ 43.35万 - 项目类别:
CysZ proteins_A family of sulfate transporters with remarkable architecture
CysZ蛋白_具有卓越结构的硫酸盐转运蛋白家族
- 批准号:
8461956 - 财政年份:2012
- 资助金额:
$ 43.35万 - 项目类别:
相似海外基金
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
- 批准号:
2304861 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Continuing Grant
STTR Phase I: Development of Modular Reactors to Convert Methane to Alcohols at Low Temperatures
STTR 第一阶段:开发在低温下将甲烷转化为醇的模块化反应器
- 批准号:
2151256 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Standard Grant
Development of amine-dehydrogenase and lyase biocatalysts for the sustainable manufacturing of unnatural chiral amino acids and amino alcohols
开发胺脱氢酶和裂解酶生物催化剂,用于可持续生产非天然手性氨基酸和氨基醇
- 批准号:
2870226 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Studentship
Collaborative Research: Overlooked Oxidation of Aqueous Alcohols: Kinetics, Mechanism, and Relevance to Water Reuse
合作研究:被忽视的水醇氧化:动力学、机制以及与水回用的相关性
- 批准号:
2304860 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: MPS-Ascend: Development of Selective Reaction Schemes for Photoactivation of Alcohols
博士后奖学金:MPS-Ascend:醇光活化选择性反应方案的开发
- 批准号:
2316541 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Fellowship Award
Development of phosphorylation of alcohols in protein based on the structural modification of phosphoenolpyruvate
基于磷酸烯醇丙酮酸结构修饰的蛋白质醇磷酸化研究进展
- 批准号:
22KJ1152 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Nickel Cross-Coupling Cascades with α-Heteroatom Radicals to Prepare Sterically Hindered Alcohols and Amines
镍与α-杂原子自由基交叉偶联级联制备位阻醇和胺
- 批准号:
10604535 - 财政年份:2023
- 资助金额:
$ 43.35万 - 项目类别:
Towards a better understanding of the effect of the pentafluorosulfanyl group on the lipophilicity and acid/base properties of alcohols and amines
更好地了解五氟硫基对醇和胺的亲脂性和酸/碱性质的影响
- 批准号:
571856-2021 - 财政年份:2022
- 资助金额:
$ 43.35万 - 项目类别:
Alliance Grants
Pd-Catalyzed C(sp3)-H Functionalizations Directed by Free Alcohols and Boc-Protected Amines
由游离醇和 Boc 保护的胺引导的 Pd 催化 C(sp3)-H 官能化
- 批准号:
10606508 - 财政年份:2022
- 资助金额:
$ 43.35万 - 项目类别:
Facile One-Pot Reductive Deoxygenations of Alcohols and Carboxylic Acids Using Sulfuryl Fluoride
使用硫酰氟轻松进行醇和羧酸的一锅还原脱氧
- 批准号:
546996-2020 - 财政年份:2022
- 资助金额:
$ 43.35万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral