TOPIC 427 - De-Identification Software Tools and Pipelines for Cancer Imaging Research
主题 427 - 用于癌症成像研究的去识别化软件工具和管道
基本信息
- 批准号:10612710
- 负责人:
- 金额:$ 4.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-16 至 2022-09-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsClinicalComplexComputer softwareDataData ElementDevelopmentDigital Imaging and Communications in MedicineHeadHealthImageLocationManufacturer NameMedical ImagingPhaseProcessReportingResearchSecuritySoftware ToolsSystemTestingValidationbasecancer imagingcloud baseddata de-identificationdeep learning
项目摘要
This proposal has three main objectives. Firstly, to identify actual and potential PHI/PII locations in DICOM and WSI data - both tags in the header data and coordinates in the image data, including manufacturer specific data - and to deliver a detailed, broad-based landscape analysis report. Secondly, to deliver a robust, validatable software solution that facilitates the development, management, chaining, and execution of medical image data de-identification algorithms. For Phase I, we will implement data de-identification pipelines using as a baseline the data elements identified in the landscape analysis report. Thirdly, to develop, on the same software platform, a set of deep learning-based algorithms to perform image data deidentification. We will facilitate the execution of these algorithms against data both local and remote, in order to obviate any security concerns regarding having to move data to the cloud for de-identification - i.e., we will "bring the algorithms to the data". Our cloud-based solution, EICON REACH (Remote Execution of Algorithms for Clinical Health), provides the underpinning for this proposal. We will enhance its capabilities to address directly the objectives listed. At the end of Phase I, we will provide these capabilities in a fully tested, fully documented, validated solution with full audit trail of user actions and data transformations. EICON REACH can also serve as the basis for a Phase II proposal wherein we would undertake a broader and deeper effort to address the more complex issues related to identification, review and redaction of PHI in the image data.
这项建议有三个主要目标。首先,识别DICOM和WSI数据中的实际和潜在的PHI/PII位置-标题数据中的标签和图像数据中的坐标,包括制造商特定的数据-并提供详细的、基础广泛的景观分析报告。其次,提供一个强大的、可验证的软件解决方案,促进医学图像数据去识别算法的开发、管理、链接和执行。在第一阶段,我们会以景观分析报告所确定的数据元素为基准,实施数据去识别化管道。第三,在同一软件平台上开发一套基于深度学习的算法来执行图像数据去识别。我们将促进这些算法对本地和远程数据的执行,以消除有关必须将数据移动到云进行去识别的任何安全问题-即,我们将“把算法带到数据中”。我们基于云的解决方案EICON REACH(远程执行临床健康算法)为这一提议提供了基础。我们将加强其直接实现所列目标的能力。在第一阶段结束时,我们将在经过充分测试、充分记录、验证的解决方案中提供这些功能,并对用户操作和数据转换进行完整的审计跟踪。EICON REACH也可以作为第二阶段提案的基础,在第二阶段,我们将进行更广泛和更深入的努力,以解决与图像数据中PHI的识别、审查和编辑相关的更复杂的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAWRENCE O'SULLIVAN其他文献
LAWRENCE O'SULLIVAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAWRENCE O'SULLIVAN', 18)}}的其他基金
AUTOMATED DEIDENTIFICATION OF PATHOLOGY AND RADIOLOGY DATA
病理学和放射学数据的自动去识别
- 批准号:
10904320 - 财政年份:2023
- 资助金额:
$ 4.36万 - 项目类别:
TOPIC 427 - De-Identification Software Tools and Pipelines for Cancer Imaging Research
主题 427 - 用于癌症成像研究的去识别化软件工具和管道
- 批准号:
10496719 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 4.36万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 4.36万 - 项目类别: