Mechanisms of activity-dependent microglia-neuron interactions in development and disease
发育和疾病中活动依赖性小胶质细胞-神经元相互作用的机制
基本信息
- 批准号:10612683
- 负责人:
- 金额:$ 9.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-03-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAmyloid beta-ProteinAnatomyBiologicalBiological ModelsBrainBrain regionCD47 geneCalciumCellsCommunicationComplementComplement ActivationDataDevelopmentDiseaseDisease modelEatingElectrophysiology (science)ElementsEndocytosisEnsureEquilibriumExcisionExhibitsExocytosisFunctional disorderHippocampus (Brain)HistologicHomeostasisImageImmuneImmune systemImpaired cognitionImpairmentIn VitroInstructionInvadedJAK2 geneLeadMediatingMicrogliaMitochondriaModelingMolecularMusNeurodegenerative DisordersNeuronsPTPNS1 genePathologicPatternPhagocytesPhagocytosisPharmacologyPhosphatidylserinesProcessProtein Tyrosine KinaseRoleShapesSignal TransductionSynapsesSystemTREM2 geneTechniquesTestingTherapeutic InterventionTranslatingUp-RegulationVisualVisual system structureabeta accumulationbasecritical developmental periodgenetic manipulationin vitro Assayin vivoinsightmitochondrial dysfunctionmouse geneticsmouse modelnervous system disorderneural circuitneurotransmissionnew therapeutic targetpathogenphosphatidylserine receptorpresynapticpreventreceptorrelating to nervous systemresponsesensorsynaptic pruning
项目摘要
Summary
Microglia-mediated synaptic pruning is highly regulated during developmental critical periods of synaptic
refinement, but its activation in vulnerable brain regions in disease models suggests that disease and
development share common regulators and mechanisms of pruning. Synaptic refinement is an activity-
dependent process where weak synapses are preferentially pruned. We hypothesize that neural activity is a key
upstream activator and regulator of microglia-mediated pruning in development and disease. In support of this
hypothesis, we and others demonstrated that microglia phagocytose synaptic elements and are capable of
sensing and responding to activity-related signals as they preferentially engulf less active synapses. However,
how microglia determine which synapses to engulf and which to avoid, and the identity of the upstream neuronal
signals that detect neural activity and transmit this information to microglia are not known.
In the immune system, phagocytosis is carefully governed by both phagocytic, “eat me” and anti-
phagocytic, “don’t eat me” molecules. In the brain, we identified neuronal CD47, a “don’t eat me” signal protects
synapses from inappropriate removal. We further found that exposed phosphatidylserine (PS), an “eat me signal”
drives microglial recognition of synapses for engulfment. Furthermore, we have identified the tyrosine kinases,
Pyk2 and JAK2 as neuronal signals that are activated at inactive synapses and necessary for the elimination of
these inputs. Finally, we found that PS exposure is elevated early in the hippocampus in an Alzheimer's disease
(AD) mouse model. Based on these and other data, we propose to test the hypothesis that activity-dependent
signals within neurons, such as Pyk2 and JAK2, dynamically regulate "eat me" and "don't eat me" signals on
synapses to drive proper microglial phagocytosis of inactive synapses. We further hypothesize that aberrant
activation of such signals lead to abnormal synapse loss in neurodegenerative diseases, such as Alzheimer’s
Disease (AD). Specifically we aim to test the following: Aim 1) Investigate mechanisms of activity-regulated PS
exposure and function at developing synapses; Aim 2: Determine activity-dependent neuronal signaling that
regulates "eat me" and "don't eat me" signals for microglial engulfment; and Aim 3: Investigate the mechanisms
of early synaptic dysfunction and microglial synaptic targeting associated with AD. We will use interdisciplinary
in vivo and in vitro approaches with molecular/cell biological, histological, mouse genetic, imaging, and
electrophysiological techniques with various newly developed systems to address our aims. Our studies could
also provide new targets for therapeutic intervention, as restoring the balance of protective and elimination
signals could protect against synapse loss in early stages of AD and other diseases.
总结
小胶质细胞介导的突触修剪在突触发育关键期受到高度调节
但它在疾病模型中脆弱的大脑区域的激活表明,疾病和
发展共享共同的监管机构和修剪机制。突触优化是一种活动-
弱突触优先被修剪的依赖过程。我们假设神经活动是
在发育和疾病中小胶质细胞介导的修剪的上游激活剂和调节剂。为支持这一
假设,我们和其他人证明,小胶质细胞吞噬突触元件,并能够
感知和响应与活动相关的信号,因为它们优先吞噬不太活跃的突触。然而,在这方面,
小胶质细胞如何决定吞噬哪些突触,避免哪些突触,以及上游神经元的身份
检测神经活动并将该信息传递给小胶质细胞的信号是未知的。
在免疫系统中,吞噬作用是由吞噬细胞,“吃我”和抗-
吞噬细胞的“别吃我”分子在大脑中,我们发现了神经元CD 47,一个“不要吃我”的信号可以保护
不适当的切除造成的突触损伤我们进一步发现,暴露的磷脂酰丝氨酸(PS),一个“吃我的信号”,
驱动小胶质细胞识别突触以进行吞噬。此外,我们还鉴定了酪氨酸激酶,
Pyk 2和JAK 2作为神经元信号,在非活性突触处被激活,并且是消除神经元信号所必需的。
这些投入。最后,我们发现PS暴露在阿尔茨海默病的海马早期升高
(AD)小鼠模型基于这些和其他数据,我们建议测试的假设,活动依赖
神经元内的信号,如Pyk 2和JAK 2,动态调节“吃我”和“不吃我”的信号。
突触驱动适当的小胶质细胞吞噬不活跃的突触。我们进一步假设,
这些信号的激活导致神经退行性疾病(如阿尔茨海默氏病)中的异常突触丧失
疾病(AD)。具体而言,我们的目标是测试以下内容:目的1)研究活性调节PS的机制
目的2:确定活动依赖性神经元信号传导,
调节小胶质细胞吞噬的“吃我”和“不吃我”信号;目标3:研究机制
与AD相关的早期突触功能障碍和小胶质细胞突触靶向。我们将使用跨学科的
采用分子/细胞生物学、组织学、小鼠遗传学、成像和
电生理技术与各种新开发的系统,以满足我们的目标。我们的研究可以
也为治疗干预提供了新的目标,因为恢复了保护和消除的平衡,
信号可以在AD和其他疾病的早期阶段防止突触丢失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Beth Ann Stevens其他文献
Beth Ann Stevens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Beth Ann Stevens', 18)}}的其他基金
Mechanisms of Activity-dependent Microglia-neuron Interactions in Development and Disease
发育和疾病中活动依赖性小胶质细胞-神经元相互作用的机制
- 批准号:
10611898 - 财政年份:2021
- 资助金额:
$ 9.19万 - 项目类别:
2017 Glial Biology Gordon Research Conference & Gordon Research Seminar
2017年神经胶质生物学戈登研究会议
- 批准号:
9331201 - 财政年份:2017
- 资助金额:
$ 9.19万 - 项目类别:
Investigating CD47-SIRPa as novel protective signals during CNS synaptic pruning
研究 CD47-SIRPa 作为 CNS 突触修剪过程中的新型保护信号
- 批准号:
9032548 - 财政年份:2015
- 资助金额:
$ 9.19万 - 项目类别:
Investigating CD47-SIRPa as novel protective signals during CNS synaptic pruning
研究 CD47-SIRPa 作为 CNS 突触修剪过程中的新型保护信号
- 批准号:
8937448 - 财政年份:2015
- 资助金额:
$ 9.19万 - 项目类别:
Mechanisms of activity-dependent microglia-neuron interactions in development and disease
发育和疾病中活动依赖性小胶质细胞-神经元相互作用的机制
- 批准号:
10299571 - 财政年份:2015
- 资助金额:
$ 9.19万 - 项目类别:
Complement-Microglia Interaction in Synaptic Loss and Neurodegeneration in HD
补体-小胶质细胞相互作用在 HD 突触丢失和神经变性中的作用
- 批准号:
9151051 - 财政年份:2014
- 资助金额:
$ 9.19万 - 项目类别:
Complement-Microglia Interaction in Synaptic Loss and Neurodegeneration in HD
补体-小胶质细胞相互作用在 HD 突触丢失和神经变性中的作用
- 批准号:
9317541 - 财政年份:2014
- 资助金额:
$ 9.19万 - 项目类别:
Complement-Microglia Interaction in Synaptic Loss and Neurodegeneration in HD
补体-小胶质细胞相互作用在 HD 突触丢失和神经变性中的作用
- 批准号:
8786853 - 财政年份:2014
- 资助金额:
$ 9.19万 - 项目类别:
Complement-Microglia Interaction in Synaptic Loss and Neurodegeneration in HD
补体-小胶质细胞相互作用在 HD 突触丢失和神经变性中的作用
- 批准号:
9099977 - 财政年份:2014
- 资助金额:
$ 9.19万 - 项目类别:
Investigating the Role of Glia in Activity-Dependent Synapse Elimination
研究神经胶质细胞在活动依赖性突触消除中的作用
- 批准号:
8644327 - 财政年份:2011
- 资助金额:
$ 9.19万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 9.19万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 9.19万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 9.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 9.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 9.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)