Integrative NMR and biophysical studies of fibrillar protein assemblies in health and disease
健康和疾病中纤维蛋白组装的综合核磁共振和生物物理学研究
基本信息
- 批准号:10613473
- 负责人:
- 金额:$ 57.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAmyloidArchitectureAtomic Force MicroscopyBindingBinding SitesBiologicalBiologyBiophysicsCell physiologyCellsCellular AssayCollagenCollagen FibrilComplexComputing MethodologiesConnective Tissue DiseasesCryoelectron MicroscopyDefectDiseaseDisease ProgressionExtracellular Matrix ProteinsHealthHomeostasisHourInheritedIntegrinsInterventionLinkMolecularMolecular ConformationMotionMutationNMR SpectroscopyNatureNeurodegenerative DisordersOsteogenesis ImperfectaParkinson DiseasePathologicPlatelet aggregationPlayPropertyProteinsProtocols documentationRoleSpecificityStructureSurfaceSurface PropertiesSystemTechniquesTherapeuticTimeVisualizationalpha synucleinbiological systemsbiophysical analysisbiophysical toolsdesignmonomernanoscalenovelnovel therapeutic interventionself assemblysolid state nuclear magnetic resonancesynucleinopathy
项目摘要
Abstract
Protein self-assembly into structured fibrils plays both functional and dysfunctional roles in biology. We are
investigating two classes of fibril forming proteins: collagen, a fibril that forms essential interactions with
numerous proteins and extracellular matrix components for proper cellular function and α-synuclein (αS), an
intrinsically disordered protein that self-assembles into oligomers and fibrils that are associated with debilitating
synucleinopathies, such as Parkinson’s Disease. While in both cases, fibrils are often thought of as rigid,
rather inert, entities, we have recently discovered conformational dynamics that profoundly impact their atomic-
to-nano scale properties. Despite the importance of these fibrillar proteins, the molecular determinants of fibril-
protein interactions and their impact in health and disease remain unanswered. Thus, the overarching objective
of this proposal is to understand how molecular motions and surface properties modulate protein interactions
at different assembly stages (monomer, oligomer, fibril), spatial extent (atomic to nanoscale), and temporal
regime (picosecond to hours) to promote normal homeostasis or pathological disease states. The unifying
theme of this proposal is that we are developing the key techniques and protocols necessary for fibril
characterization that recognize the conformational plasticity and diverse interactions of these systems. We use
a multifaceted approach integrating solution and solid-state nuclear magnetic resonance spectroscopy, atomic
force microscopy, cryo-electron microscopy, computational methods, and link these to cellular experimentation.
We are addressing the question of how collagen fibrils recognize their binding partners (we focus in particular
on integrin, a key protein involved in platelet aggregation) despite the fact that many binding sites are hidden in
the complex collagen fibril architecture. Beyond structure/function in healthy fibrils, we will investigate the
impact of GlyX mutations in hereditary connective tissue disease such as Osteogenesis Imperfecta (brittle
bone disease) and visualize for the first time how these defects impact on fibril assembly, structure and
function. Although a very different biological system, we raise similar fibril interaction questions for αS: cell-to-
cell propagation and templated seeding of endogenous αS monomers by fibrils increases the number of fibrils
and is one of the primary factors in disease progression. This interaction mechanism is not understood and we
will investigate this by first characterizing amyloid surfaces from the atomic to the nano-scale and then
visualizing the interactions of the monomers with them. Results will shed light on the nature and specificity of
collagen and αS interactions, the biophysical and biological impact of disease-affiliated collagen mutations,
and mechanisms of pathological cell-to-cell propagation and seeding of αS aggregates. Elucidating novel
interaction mechanisms will aid in design of new therapeutic strategies to rescue compromised collagen
interactions or pathological αS aggregation in devastating neurodegenerative disease.
抽象的
蛋白质自组装成结构化原纤维在生物学中发挥着功能和功能障碍的作用。我们是
研究两类原纤维形成蛋白:胶原蛋白,一种与胶原蛋白形成重要相互作用的原纤维
多种蛋白质和细胞外基质成分,以维持正常的细胞功能和 α-突触核蛋白 (αS),
本质上无序的蛋白质,自组装成寡聚体和原纤维,与衰弱有关
突触核蛋白病,例如帕金森病。虽然在这两种情况下,原纤维通常被认为是刚性的,
相当惰性的实体,我们最近发现构象动力学深刻地影响了它们的原子-
纳米级的特性。尽管这些纤维蛋白很重要,但纤维蛋白的分子决定因素
蛋白质相互作用及其对健康和疾病的影响仍未得到解答。因此,总体目标
该提案的目的是了解分子运动和表面特性如何调节蛋白质相互作用
在不同的组装阶段(单体、低聚物、原纤维)、空间范围(原子到纳米尺度)和时间
制度(皮秒到小时)以促进正常的体内平衡或病理疾病状态。统一的
该提案的主题是我们正在开发原纤维所需的关键技术和协议
识别这些系统的构象可塑性和不同相互作用的表征。我们使用
集成溶液和固态核磁共振波谱、原子
力显微镜、冷冻电子显微镜、计算方法,并将这些与细胞实验联系起来。
我们正在解决胶原纤维如何识别其结合伙伴的问题(我们特别关注
整合素(一种参与血小板聚集的关键蛋白质),尽管事实上许多结合位点隐藏在
复杂的胶原纤维结构。除了健康原纤维的结构/功能之外,我们还将研究
GlyX 突变对遗传性结缔组织疾病如成骨不全症(脆性
骨疾病)并首次可视化这些缺陷如何影响原纤维的组装、结构和
功能。尽管这是一个非常不同的生物系统,但我们对 αS 提出了类似的原纤维相互作用问题:细胞与
细胞增殖和原纤维内源 αS 单体的模板接种增加了原纤维的数量
并且是疾病进展的主要因素之一。这种相互作用机制尚不清楚,我们
将首先从原子到纳米尺度表征淀粉样蛋白表面,然后进行研究
可视化单体与它们的相互作用。结果将揭示以下问题的性质和特殊性:
胶原蛋白和 αS 相互作用、疾病相关胶原蛋白突变的生物物理和生物学影响,
以及病理性细胞间传播和 αS 聚集体播种的机制。阐释小说
相互作用机制将有助于设计新的治疗策略来拯救受损的胶原蛋白
破坏性神经退行性疾病中的相互作用或病理性 αS 聚集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEAN S BAUM其他文献
JEAN S BAUM的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEAN S BAUM', 18)}}的其他基金
The Protein Aggregation Conference: Exploring Rugged Landscapes
蛋白质聚集会议:探索崎岖的地形
- 批准号:
10681615 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Rutgers Helium Recovery System for High Field NMR
罗格斯高场核磁共振氦回收系统
- 批准号:
10170724 - 财政年份:2020
- 资助金额:
$ 57.3万 - 项目类别:
Acquisition of a 700 MHz NMR CryoProbe
获取 700 MHz NMR CryoProbe
- 批准号:
10387885 - 财政年份:2020
- 资助金额:
$ 57.3万 - 项目类别:
Integrative NMR and biophysical studies of fibrillar protein assemblies in health and disease
健康和疾病中纤维蛋白组装的综合核磁共振和生物物理学研究
- 批准号:
10392359 - 财政年份:2020
- 资助金额:
$ 57.3万 - 项目类别:
NMR Based Studies of Alpha-Synuclein Aggregation and Inhibition
基于 NMR 的 α-突触核蛋白聚集和抑制研究
- 批准号:
9527263 - 财政年份:2015
- 资助金额:
$ 57.3万 - 项目类别:
Experiments & Computations to Find Aggregation-Prone Ensembles of Alpha-Synuclein
实验
- 批准号:
7945284 - 财政年份:2009
- 资助金额:
$ 57.3万 - 项目类别:
NMR studies of collagen model peptides and their interactions with collagen recep
胶原蛋白模型肽及其与胶原受体相互作用的 NMR 研究
- 批准号:
8518349 - 财政年份:1991
- 资助金额:
$ 57.3万 - 项目类别:
NMR studies of collagen model peptides and their interactions with collagen recep
胶原蛋白模型肽及其与胶原受体相互作用的 NMR 研究
- 批准号:
8667455 - 财政年份:1991
- 资助金额:
$ 57.3万 - 项目类别:
相似国自然基金
基于聚金属氧酸盐对Amyloid蛋白的定点化学修饰及其在阿尔茨海默症治疗中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于S1P通路探究Amyloid-β在干性年龄相关性黄斑变性中的作用
- 批准号:81870666
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
Amyloid-beta-PirB 相互作用介导小胶质细胞表型和功能变化参与AD进展的机制研究
- 批准号:81601123
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
Beta-amyloid寡聚体特有的抗原表位多肽疫苗的研究
- 批准号:30971012
- 批准年份:2009
- 资助金额:35.0 万元
- 项目类别:面上项目
抗阿兹海默病Beta-Amyloid寡聚物单链可变区抗体的筛选及其动物试验
- 批准号:30570622
- 批准年份:2005
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Elucidating the function of a protective protein in a novel in vitro reconstitution system for disaggregation of ubiquitinated amyloid fibrils
阐明保护蛋白在新型体外重构系统中用于解聚泛素化淀粉样蛋白原纤维的功能
- 批准号:
24K10522 - 财政年份:2024
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
新規amyloid-β抑制因子ILEIの減少に伴うアルツハイマー病リスクと分子制御機構の解析
新型β淀粉样蛋白抑制剂ILEI降低相关阿尔茨海默病风险及分子调控机制分析
- 批准号:
23K06805 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Extracting the detrimental effects of amyloid beta oligomer using contextual learning and controlling it with antagonist molecules
使用情境学习提取β淀粉样蛋白寡聚体的有害影响并用拮抗剂分子控制它
- 批准号:
23K06348 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Development of inhibitors for amyloid peptide aggregation based on peptidomimetics
基于拟肽的淀粉样肽聚集抑制剂的开发
- 批准号:
23K14318 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effect of abnormal beta-amyloid on Ca dynamics in neural cells
异常β-淀粉样蛋白对神经细胞钙动力学的影响
- 批准号:
23K14744 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of novel functions of presenilin in ApoE secretion and brain amyloid removal
阐明早老素在 ApoE 分泌和脑淀粉样蛋白去除中的新功能
- 批准号:
23KF0156 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mechanisms underlying Sex differences in Cerebral Amyloid Angiopathy: The Fibrin-Microglia Crosstalk
脑淀粉样血管病性别差异的潜在机制:纤维蛋白-小胶质细胞串扰
- 批准号:
10662862 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
- 批准号:
10715891 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别:
Astrocytic exocytosis of ATP in amyloid pathology and Alzheimer's disease
淀粉样蛋白病理学和阿尔茨海默病中 ATP 的星形细胞胞吐作用
- 批准号:
10722422 - 财政年份:2023
- 资助金额:
$ 57.3万 - 项目类别: