Metalloenzyme structure, function and assembly
金属酶的结构、功能和组装
基本信息
- 批准号:10621553
- 负责人:
- 金额:$ 41.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:AmazeAnabolismAntibiotic ResistanceAntibioticsAntineoplastic AgentsAntiviral AgentsArchitectureBiochemistryBiological ModelsBiotechnologyCarbonCarbon DioxideChemicalsChemistryComplexCryoelectron MicroscopyCrystallographyDNA biosynthesisDataDeoxyribonucleotidesElectron TransportEnzymesGasesHandHealthHeartHumanIonsLifeMedicalMetalloproteinsMetalsMethaneMethodsMolecularMolecular ConformationNatureOrganometallic ChemistryProductionProtein EngineeringProteinsReactionResolutionRibonucleotide ReductaseRibonucleotidesScaffolding ProteinStructureSystemToxic Environmental SubstancesX-Ray Crystallographyanti-cancercarbon compoundclimate changecombatdesignfrontiergreenhouse gasesimprovedinsightmetalloenzymemicrobialnovelremediationsample fixationscaffold
项目摘要
Abstract
The combination of metal ions with proteins offers unique chemical reactivities that are at the heart of many of
Nature’s most important and amazing chemical transformations. For example, metalloenzymes catalyze the
reduction of ribonucleotides to deoxyribonucleotides, a rate-limiting step in DNA biosynthesis. They
biosynthesize anticancer and antiviral compounds that have unusual scaffolds and catalyze the carbon-carbon
bond forming reactions that afford life on CO2 and H2 gases. Our lab employs structural methods to interrogate
how metalloenzymes are able to perform this incredible chemistry. We seek to understand how the
architecture of metalloenzymes allows for radical species to be controlled – i.e. turned off, turned on and
harnessed – to enable the reaction at hand. We also strive to understand how proteins are designed to enable
long-range electron transfer without protein damage or radical loss. In this proposal, we describe structural
studies of our metalloenzyme model systems, including class Ia (diiron-dependent) and class III (glycyl radical-
dependent) ribonucleotide reductases that allow us to interrogate the molecular basis of radical-based
chemistry. We also describe efforts to understand how protein scaffolds facilitate organometallic chemistry,
especially in regard to microbial carbon dioxide fixation and methane production. These studies leverage both
our expertise in working with O2-sensitive metalloenzymes and in cryogenic-electron microscopy (cryo-EM).
Although we will continue to employ X-ray crystallography, cryo-EM is proving to be a game-changer for many
of our metalloenzyme systems. In particular, the resolution revolution of cryo-EM provides us with the means to
obtain long-awaited structures of both large (2000 kDa) and transient metalloprotein complexes and to
determine structures of metalloenzymes in functionally-essential conformational states that were previously
unattainable by crystallography. The results of our structural studies will enable structure-based design of
novel antibiotics targeting, for example, microbial ribonucleotide reductases. These structural data will also
guide efforts to exploit radical enzymes for the production of medically important compounds with unusual
scaffolds. These data will additionally facilitate the application of metalloenzymes or their bioinspired inorganic
counterparts in the production of high-value carbon compounds from the greenhouse gas CO2 and, ideally,
improve our understanding of some of the more enigmatic aspects of metalloprotein biochemistry.
摘要
金属离子与蛋白质的结合提供了独特的化学反应性,这是许多化学反应的核心。
自然界最重要和最令人惊奇的化学变化。例如,金属酶催化
核糖核苷酸还原为脱氧核糖核苷酸,这是DNA生物合成中的限速步骤。他们
生物合成抗癌和抗病毒化合物,具有不寻常的支架和催化碳-碳
键形成反应,提供了对CO2和H2气体的生命。我们的实验室采用结构化方法来审问
金属酶是如何进行这种不可思议的化学反应的。我们试图了解
金属酶的结构允许自由基种类被控制-即关闭、打开和
利用-使手头的反应。我们还努力了解蛋白质是如何设计的,
长距离电子转移而没有蛋白质损伤或自由基损失。在本建议中,我们描述了结构
我们的金属酶模型系统的研究,包括Ia类(二铁依赖性)和III类(甘氨酰自由基-
依赖的)核糖核苷酸还原酶,使我们能够询问基于自由基的分子基础
化学.我们还描述了理解蛋白质支架如何促进有机金属化学的努力,
特别是在微生物二氧化碳固定和甲烷生产方面。这些研究利用了
我们在O2敏感金属酶和低温电子显微镜(cryo-EM)方面的专业知识。
虽然我们将继续采用X射线晶体学,但冷冻EM被证明是许多人的游戏规则改变者
我们的金属酶系统。特别是,cryo-EM的分辨率革命为我们提供了
获得期待已久的大(2000 kDa)和瞬时金属蛋白复合物的结构,
确定金属酶的结构在功能上必要的构象状态,以前
晶体学无法达到的。我们的结构研究结果将使基于结构的设计,
靶向例如微生物核糖核苷酸还原酶的新抗生素。这些结构数据也将
指导开发自由基酶的努力,以生产具有特殊重要医学意义的化合物。
脚手架这些数据将另外促进金属酶或其生物启发的无机酶的应用。
从温室气体CO2中生产高价值碳化合物的同行,理想情况下,
提高我们对金属蛋白生物化学中一些更神秘的方面的理解。
项目成果
期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Starting a new chapter on class Ia ribonucleotide reductases.
- DOI:10.1016/j.sbi.2022.102489
- 发表时间:2022-10
- 期刊:
- 影响因子:6.8
- 作者:T. Levitz;C. Drennan
- 通讯作者:T. Levitz;C. Drennan
Structural and spectroscopic analyses of the sporulation killing factor biosynthetic enzyme SkfB, a bacterial AdoMet radical sactisynthase.
- DOI:10.1074/jbc.ra118.005369
- 发表时间:2018-11-09
- 期刊:
- 影响因子:0
- 作者:Grell TAJ;Kincannon WM;Bruender NA;Blaesi EJ;Krebs C;Bandarian V;Drennan CL
- 通讯作者:Drennan CL
Development of an in vitro method for activation of X-succinate synthases for fumarate hydroalkylation.
- DOI:10.1016/j.isci.2023.106902
- 发表时间:2023-06-16
- 期刊:
- 影响因子:5.8
- 作者:Andorfer, Mary C.;King-Roberts, Devin T.;Imrich, Christa N.;Brotheridge, Balyn G.;Drennan, Catherine L.
- 通讯作者:Drennan, Catherine L.
The Atypical Cobalamin-Dependent S-Adenosyl-l-Methionine Nonradical Methylase TsrM and Its Radical Counterparts.
- DOI:10.1021/jacs.1c12064
- 发表时间:2022-04-06
- 期刊:
- 影响因子:15
- 作者:Ulrich EC;Drennan CL
- 通讯作者:Drennan CL
Structural and biochemical investigations of a HEAT-repeat protein involved in the cytosolic iron-sulfur cluster assembly pathway.
- DOI:10.1038/s42003-023-05579-3
- 发表时间:2023-12-18
- 期刊:
- 影响因子:5.9
- 作者:Vasquez, Sheena;Marquez, Melissa D.;Brignole, Edward J.;Vo, Amanda;Kong, Sunnie;Park, Christopher;Perlstein, Deborah L.;Drennan, Catherine L.
- 通讯作者:Drennan, Catherine L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CATHERINE L DRENNAN其他文献
CATHERINE L DRENNAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CATHERINE L DRENNAN', 18)}}的其他基金
SOLUTION SAXS STUDIES OF SUBUNIT INTERACTIONS IN RIBONUCLEOTIDE REDUCTASE
核糖核苷酸还原酶中亚基相互作用的解决方案 SAXS 研究
- 批准号:
8363533 - 财政年份:2011
- 资助金额:
$ 41.03万 - 项目类别:
STRUCTURAL INSIGHT INTO A STAC-LIKE ACTIVE SITE USING A REBC MUTANT
使用 REBC 突变体对类 STAC 活性位点的结构洞察
- 批准号:
8169294 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
PROTEIN ENGINEERING OF BIRA FOR PROTEIN TAGGING
用于蛋白质标记的 BIRA 蛋白质工程
- 批准号:
8169295 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
COMPLEX OF CORRINOID IRON-SULFUR PROTEIN AND ITS METHYLTRANSFERASE
咕啉铁硫蛋白复合物及其甲基转移酶
- 批准号:
8169291 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
NON-HEME IRON HALOGENASES IN NON-RIBOSOMAL PEPTIDE SYNTHESIS (NRPS) PATHWAYS
非核糖体肽合成 (NRPS) 途径中的非血红素铁卤化酶
- 批准号:
8169293 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
HYDROXYPROPYLPHOSPHONIC ACID EPOXIDASE (HPPE) BOUND WITH SUBSTRATE ANALOGS
羟丙基膦酸环氧化酶 (HPPE) 与底物类似物结合
- 批准号:
8169296 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
TERTIARY AND QUATERNARY STRUCTURE CHARACTERIZATION OF METALLOENZYMES IN SOLUTION
溶液中金属酶的三级和四级结构表征
- 批准号:
8171518 - 财政年份:2010
- 资助金额:
$ 41.03万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 41.03万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 41.03万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 41.03万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 41.03万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 41.03万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 41.03万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 41.03万 - 项目类别:
Discovery Early Career Researcher Award