High Resolution Functional Maps of Enhancer RNA and Subcellular RNA Granules in Human Immune Cells
人类免疫细胞中增强子 RNA 和亚细胞 RNA 颗粒的高分辨率功能图谱
基本信息
- 批准号:10623195
- 负责人:
- 金额:$ 40.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressCellsChromatinChromosome MappingCytoplasmic GranulesDNA Sequence AlterationDiseaseElementsEnhancersFoundationsGene ExpressionGenesGenetic Enhancer ElementGenetic TranscriptionGenetic VariationGenomeGenomicsHigh-Throughput RNA SequencingHumanHuman GenomeImmuneLinkLongevityMapsMembraneMetabolic DiseasesMethodsMissionModificationMolecularOrganellesPhasePoly(A) TailProcessRNARNA ProcessingRNA analysisRegulationResearchResolutionRunningScienceSiteSpecificityTailVariantcancer immunotherapycost efficientexhaustionhuman diseaseimmune activationimprovedinnovationnew therapeutic targetnovelperipheral bloodprecision medicineprogramsspatiotemporalstress granuletemporal measurementtraffickingtranscriptome sequencing
项目摘要
Project Abstract/Summary
My research focuses on the precise understanding of the regulation of RNA in living cells and human diseases.
Mapping where the regulations take place is critical in identifying factors and elements that alter RNA
expression. Further enhancing the genomic resolution and the spatiotemporal resolution of RNA expression
have been a strong driver of leading discoveries in molecular and disease mechanisms.
My first focus is to define the high-resolution maps of the transcriptional enhancers in peripheral blood
immune cells, using enhancer RNA (eRNA) as the guide. eRNA transcription is a novel mechanism of which
the RNA is synthesized from enhancer sequences themselves other than their target genes. eRNA has
expanded the previous understanding of how enhancers are constructed and allowed mapping important
subregions within the enhancers in higher resolution. eRNA based maps of enhancers will guide us to more
efficiently discover genomic elements linked to the dysregulation of disease genes, and specifically dissect
causal genetic variations or mutations. This will have a widespread impact on major human diseases, and my
specific focus is on immunometabolic diseases and the impact of enhancer variations at the eRNA start sites.
The second focus is on the subcellular compartments that leads to differential RNA trafficking, processing,
and decay. Membraneless organelles, such as stress granules, are suggested to be the novel mechanism of
gene expression control through phase separation and sequestration. I will explore the idea that spatial
compartmentalization confers specificity of temporal gene expression. In particular, I will dissect the specificity
of RNA processing in stress granules in high temporal resolution in immune cell activation and exhaustion and
explore their linkage to the dysregulation of disease associated genes. This will lead to the discovery of novel
therapeutic targets on the specificity factors during the phase separation process.
To address these, my group harnesses the power of high throughput RNA sequencing methods, and
further tailor them. We developed novel RNA sequencing methods such as Precision Run-On sequencing,
Chromatin Run-On sequencing, Tail End Displacement sequencing, and RNA granule sequencing. These
methods elucidate multiple aspects of RNA mechanism in high throughput: nascent transcription, poly(A) tail
modification, and RNA sequestration. We will continue to improve and develop novel RNA analysis strategies
to dissect eRNA transcription, RNA modifications, and combining these methods with subcellular
compartmentalization in high spatial and temporal resolution in cost efficient manners. These innovations will
lead to enhancements in refining genetic maps and higher spatiotemporal resolution in analyzing RNA
expression. Our mission is to discover critical mechanisms and checkpoints of RNA lifespan, focusing on
eRNA and RNA granules. This will provide foundations to apply the ideas and methods of high-resolution RNA
mapping in further collaborative efforts for advancing the precision medicine of human disease.
项目摘要/总结
我的研究重点是精确了解活细胞中 RNA 的调控和人类疾病。
绘制法规发生地点对于识别改变 RNA 的因素和元素至关重要
表达。进一步增强RNA表达的基因组分辨率和时空分辨率
一直是分子和疾病机制领域领先发现的强大推动力。
我的第一个重点是定义外周血中转录增强子的高分辨率图谱
免疫细胞,使用增强子RNA(eRNA)作为指导。 eRNA转录是一种新机制
RNA是由增强子序列本身而不是其靶基因合成的。 eRNA 有
扩展了之前对增强子如何构建的理解并允许映射重要
增强器内的分区域具有更高分辨率。基于 eRNA 的增强子图谱将指导我们更多
有效地发现与疾病基因失调相关的基因组元件,并有针对性地剖析
因果遗传变异或突变。这将对人类重大疾病产生广泛影响,我
具体重点是免疫代谢疾病和 eRNA 起始位点增强子变异的影响。
第二个重点是亚细胞区室,它导致不同的 RNA 运输、加工、
和腐烂。无膜细胞器,如应激颗粒,被认为是新的机制
通过相分离和隔离来控制基因表达。我将探讨空间的想法
区室化赋予了时间基因表达的特异性。特别是,我将剖析特殊性
免疫细胞激活和耗竭过程中应激颗粒中高时间分辨率 RNA 加工的研究
探索它们与疾病相关基因失调的联系。这将导致新奇的发现
治疗目标是相分离过程中的特异性因素。
为了解决这些问题,我的团队利用高通量 RNA 测序方法的力量,并且
进一步定制它们。我们开发了新型 RNA 测序方法,例如 Precision Run-On 测序、
染色质连续测序、尾端置换测序和 RNA 颗粒测序。这些
方法阐明高通量 RNA 机制的多个方面:新生转录、poly(A) 尾
修饰和 RNA 隔离。我们将继续改进和开发新的RNA分析策略
剖析 eRNA 转录、RNA 修饰,并将这些方法与亚细胞
以具有成本效益的方式进行高空间和时间分辨率的划分。这些创新将
改进遗传图谱并提高 RNA 分析时空分辨率
表达。我们的使命是发现 RNA 寿命的关键机制和检查点,重点关注
eRNA 和 RNA 颗粒。这将为应用高分辨率RNA的思想和方法提供基础
规划进一步的合作努力,以推进人类疾病的精准医学。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
eRNA co-expression network uncovers TF dependency and convergent cooperativity.
- DOI:10.1038/s41598-023-46415-2
- 发表时间:2023-11-04
- 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hojoong Kwak其他文献
Hojoong Kwak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hojoong Kwak', 18)}}的其他基金
High Resolution Functional Maps of Enhancer RNA and Subcellular RNA Granules in Human Immune Cells
人类免疫细胞中增强子 RNA 和亚细胞 RNA 颗粒的高分辨率功能图谱
- 批准号:
10276376 - 财政年份:2021
- 资助金额:
$ 40.39万 - 项目类别:
High Resolution Functional Maps of Enhancer RNA and Subcellular RNA Granules in Human Immune Cells
人类免疫细胞中增强子 RNA 和亚细胞 RNA 颗粒的高分辨率功能图谱
- 批准号:
10458771 - 财政年份:2021
- 资助金额:
$ 40.39万 - 项目类别:
相似国自然基金
分化肌细胞脱细胞ECM-cells sheet 3D
支架构建及其促进容积性肌组织缺损再
生修复应用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
CAFs-TAMs-tumor cells调控在HRHPV感染致癌中的作用机制研究及AI可追溯预测模型建立
- 批准号:
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
S100A8/A9--Myeloid cells特异性可溶性表氧化物水解酶(sEH)基因敲除改善胰岛素抵抗的新靶点
- 批准号:82070825
- 批准年份:2020
- 资助金额:53 万元
- 项目类别:面上项目
Leader cells通过CCL5调控糖酵解及基质硬度促进结直肠癌集体侵袭的 作用机制
- 批准号:81903002
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
HA/CD44在乳腺癌转移“先导细胞”(leader cells)侵袭中的作用及机制研究
- 批准号:81402419
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
双模式编码的慢病毒载体转染C6 Glioma Cells的影像学研究
- 批准号:81271563
- 批准年份:2012
- 资助金额:60.0 万元
- 项目类别:面上项目
树突状细胞(Dendritic cells,DCs)介导的黏膜免疫对猪轮状病毒(PRV)感染的分子作用机制研究
- 批准号:31272541
- 批准年份:2012
- 资助金额:82.0 万元
- 项目类别:面上项目
MTA2在睾丸支持细胞(Sertoli cells)中的功能和机制研究
- 批准号:31271248
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
无外源性基因iPS cells向肠细胞分化及对肠损伤的修复
- 批准号:81160050
- 批准年份:2011
- 资助金额:49.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Biosensing of chromatin packing in live cells
活细胞染色质堆积的生物传感
- 批准号:
2325317 - 财政年份:2023
- 资助金额:
$ 40.39万 - 项目类别:
Standard Grant
Understanding how enhancer chromatin transduces extracellular signalling during developmental transitions in human pluripotent cells
了解增强子染色质如何在人类多能细胞发育转变过程中转导细胞外信号传导
- 批准号:
MR/Y000595/1 - 财政年份:2023
- 资助金额:
$ 40.39万 - 项目类别:
Research Grant
Mechanisms of chromatin regulation downstream of USP7-PRC1.6 in stem cells and cancer
干细胞和癌症中 USP7-PRC1.6 下游染色质调控机制
- 批准号:
MR/X008517/1 - 财政年份:2023
- 资助金额:
$ 40.39万 - 项目类别:
Research Grant
Determination of chromatin protein dynamics in CD8 T cells
CD8 T 细胞染色质蛋白动态测定
- 批准号:
10735641 - 财政年份:2023
- 资助金额:
$ 40.39万 - 项目类别:
Understanding and application of the mechanism by which glycolysis and JunB regulates chromatin states in autoimmune T cells
糖酵解和JunB调节自身免疫T细胞染色质状态机制的理解和应用
- 批准号:
23H02635 - 财政年份:2023
- 资助金额:
$ 40.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Expanding retinal regenerative potential through chromatin biology in single cells
通过单细胞染色质生物学扩大视网膜再生潜力
- 批准号:
10463028 - 财政年份:2022
- 资助金额:
$ 40.39万 - 项目类别:
Optogenomic mapping of chromatin accessibility in live cells
活细胞染色质可及性的光基因组图谱
- 批准号:
10607894 - 财政年份:2022
- 资助金额:
$ 40.39万 - 项目类别:
Transcriptional landscaping in plant stem cells: from chromatin to gene regulatory networks
植物干细胞的转录景观:从染色质到基因调控网络
- 批准号:
2748668 - 财政年份:2022
- 资助金额:
$ 40.39万 - 项目类别:
Studentship
Single Chromatin Fiber Sequencing and Longitudinal Epigenomic Profiling in HIV+ Brain Cells Exposed to Narcotic and Stimulant
暴露于麻醉剂和兴奋剂的 HIV 脑细胞的单染色质纤维测序和纵向表观基因组分析
- 批准号:
10457112 - 财政年份:2022
- 资助金额:
$ 40.39万 - 项目类别:
Chromatin modifier Polycomb Repressive Complex 2 as a regulator of dental epithelial progenitor cells
染色质修饰剂 Polycomb Repressive Complex 2 作为牙上皮祖细胞的调节剂
- 批准号:
10535905 - 财政年份:2022
- 资助金额:
$ 40.39万 - 项目类别: